
OpenFlow Time Extension
Version 0.7

December 23, 2014

Copyright © 2014; Open Networking Foundation

OpenFlow Time Extension Version 0.7

Disclaimer

THIS SPECIFICATION IS PROVIDED ”AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FIT-
NESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, ONF dis-
claims all liability, including liability for infringement of any proprietary rights, relating to use
of information in this specification and to the implementation of this specification, and ONF
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of
use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether
under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.
No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.
Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.
Contact the Open Networking Foundation at http://www.opennetworking.org for information
on specification licensing through membership agreements.
Any marks and brands contained herein are the property of their respective owners.

2 © 2014; The Open Networking Foundation

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THEWI
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

http://www.opennetworking.org

OpenFlow Time Extension Version 0.7

Contents
1 Introduction 3

2 How it works 3
2.1 The Scheduled Bundle Procedure . 4
2.2 Discarding Scheduled Bundles . 4
2.3 Timekeeping and Synchronization . 5
2.4 Scheduling Tolerance . 6

3 Copy-Field Experimenter ID 6

4 Time Format 6

5 Time Bundle property 7

6 Bundle Feature multipart 8
6.1 Bundle Features request . 8
6.2 Bundle Features reply . 9
6.3 Bundle Features Properties . 9
6.4 Bundle Features time property . 10
6.5 Bundle Features experimenter property . 11

7 Time Bundle error message 11

1 Introduction

This document describes an ONF extension for OpenFlow version 1.3.X that enables time-based updates.
This new capability is added as an extension to the Bundle feature, which is defined in EXT-230 [1].

2 How it works

As specified in EXT-230, a bundle is a sequence of (one or more) OpenFlow modification requests from
the controller that is applied as a single OpenFlow operation. The controller uses a commit message to
apply the set of requests in the bundle. Consequently, the switch applies all messages in the bundle as
a single operation or returns an error.

This extension defines scheduled bundles; a bundle commit request may include an execution time,
specifying when the bundle should be committed. A switch that receives a scheduled bundle, commits
the bundle as close as possible to the execution time that was specified in the commit message.

This document also defines the bundle features message, allowing the controller to retrieve information
about the switch’s bundle support, and specifically about its scheduled bundle support.

3 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

2.1 The Scheduled Bundle Procedure

The extension defined in this document allows a bundle operation to be invoked at a scheduled time
that is determined by the controller.

The time-based bundle procedure is illustrated in Figure 1:

1. The controller starts the bundle procedure by sending an ONF_BCT_OPEN_REQUEST, and receives a
reply from the switch.

2. The controller then sends a set of N ONF_ET_BUNDLE_ADD_MESSAGE messages, for some N ≥ 1.

3. The controller may then send an ONF_BCT_CLOSE_REQUEST. The close request is optional, and thus
the controller may skip this step.

4. The controller sends an ONF_BCT_COMMIT_REQUEST. The ONF_BCT_COMMIT_REQUEST includes two
time-related fields: the time flag and optionally the time property. When the time flag is set, it
indicates that this is a scheduled commit. A scheduled commit request includes the time property
field, which contains the scheduled time at which the switch is expected to apply the bundle.

5. After receiving the commit message, the switch applies the bundle at the scheduled time, Ts, and
sends a ONF_BCT_COMMIT_REPLY to the controller.

switch

Time

controller

Ts

B
u
n
d
le
 C
o
m
m
it

(a
t tim

e
 T
s)

Switch executes

bundle at time Ts

B
u
n
d
le
 O
p
e
n

B
u
n
d
le
 A
d
d
 1

...

Commit includes

time property

1

O
N
F
_
B
C
T
_
O
P
E
N
_
R
E
Q
U
E
S
T O

N
F
_
B
C
T
_
O
P
E
N
_
R
E
P
L
Y

O
N
F
_
E
T
_
B
U
N
D
L
E
_
A
D
D
_
M
E
S
S
A
G
E

B
u
n
d
le
 A
d
d
 N

O
N
F
_
E
T
_
B
U
N
D
L
E
_
A
D
D
_
M
E
S
S
A
G
E

B
u
n
d
le
 C
lo
s
e

O
N
F
_
B
C
T
_
C
L
O
S
E
_
R
E
Q
U
E
S
T

O
N
F
_
B
C
T
_
C
L
O
S
E
_
R
E
P
L
Y

O
N
F
_
B
C
T
_
C
O
M
M
IT
_
R
E
Q
U
E
S
T

O
N
F
_
B
C
T
_
C
O
M
M
IT
_
R
E
P
L
Y

2 3 4

5

Figure 1: Scheduled Bundle Procedure

2.2 Discarding Scheduled Bundles

The controller may cancel a scheduled commit by sending an ONF_ET_BUNDLE_CONTROL message with
type ONF_BCT_DISCARD_REQUEST. An example is shown in Figure 2; if the switch is not able to schedule
the operation after receiving the commit message, it responds to the controller with an error message

4 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

(see 7). This indication may be used for implementing a coordinated update where either all the switches
successfully schedule the operation, or the bundle is discarded; when a controller receives a scheduling
error message from one of the switches it can send a discard message (step 5’ in in Figure 2) to other
switches that need to commit a bundle at the same time, and abort the bundle.

switch

Time

controller

Ts

B
u
n
d
le
 C
o
m
m
it

(a
t tim

e
 T
s)

Switch does not

execute bundle

B
u
n
d
le
 O
p
e
n

B
u
n
d
le
 A
d
d
 1

...

Controller sends

discard

1

O
N
F
_
B
C
T
_
O
P
E
N
_
R
E
Q
U
E
S
T O

N
F
_
B
C
T
_
O
P
E
N
_
R
E
P
L
Y

O
N
F
_
E
T
_
B
U
N
D
L
E
_
A
D
D
_
M
E
S
S
A
G
E

B
u
n
d
le
 A
d
d
 N

O
N
F
_
E
T
_
B
U
N
D
L
E
_
A
D
D
_
M
E
S
S
A
G
E

B
u
n
d
le
 C
lo
s
e

O
N
F
_
B
C
T
_
C
L
O
S
E
_
R
E
Q
U
E
S
T O

N
F
_
B
C
T
_
C
L
O
S
E
_
R
E
P
L
Y

O
N
F
_
B
C
T
_
C
O
M
M
IT
_
R
E
Q
U
E
S
T O

N
F
_
B
C
T
_
D
IS
C
A
R
D
_
R
E
P
L
Y

2 3 4

B
u
n
d
le
 D
is
c
a
rd

O
N
F
_
B
C
T
_
D
IS
C
A
R
D
_
R
E
Q
U
E
S
T

5'

Figure 2: Discarding a Scheduled Commit

2.3 Timekeeping and Synchronization

Every switch that supports scheduled bundles must maintain a clock. It is assumed that clocks are
synchronized by a method that is outside the scope of this document, e.g., the Network Time Protocol
(NTP) or the Precision Time Protocol (PTP).

Two factors affect how accurately a switch can commit a scheduled bundle; one factor is the accuracy
of the clock synchronization method used to synchronize the switches’ clocks, and the second factor is
the switch’s ability to execute real-time operations, which greatly depends on how it is implemented.

This document does not define any requirements pertaining to the degree of accuracy of performing
scheduled operations. However, every switch that supports the time extension is able to report its
estimated scheduling accuracy to the controller. The controller can retrieve this information from the
switch using the bundle features message, defined in Section 6.1.

Since a switch does not perform configuration changes instantaneously, the processing time of required
operations should not be overlooked; in the context of the extension described in this paper the scheduled
time and execution time always refer to the start time of the relevant operation.

5 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

2.4 Scheduling Tolerance

When a switch receives a scheduled commit message, it verifies that the scheduled time, Ts, is not too
far in the past or in the future. As illustrated in Figure 3, the switch verifies that Ts is within the
scheduling tolerance range.

The lower bound on Ts verifies the freshness of the packet so as to avoid acting upon old and possibly
irrelevant messages. Similarly, the upper bound on Ts guarantees that the switch does not take a long-
term commitment to execute an action that may become obsolete by the time it is scheduled to be
invoked.

Time

Ts

Switch receives

commit.

scheduling tolerance

sched_max_past sched_max_future

Figure 3: Scheduling Tolerance

The scheduling tolerance is determined by two parameters, sched_max_future and sched_max_past.
The default value of these two parameters is 1 second. The controller may set these fields to a different
value using the bundle features request, as described in Section 6.1.

If the scheduled time, Ts is within the scheduling tolerance range, the scheduled commit is performed;
if Ts occurs in the past and within the scheduling tolerance, the switch applies the bundle as soon as
possible. If Ts is a future time, the switch applies the bundle at Ts. If Ts is not within the scheduling
tolerance range, the switch responds to the controller with an error message.

3 Copy-Field Experimenter ID

The Experimenter ID of this extension is:

ONF_EXPERIMENTER_ID = 0x4F4E4600

4 Time Format

This extension defines a time format that is used in various other structures. The time format uses the
following structure:

6 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

/* Time format */
struct onf_time {

uint64_t seconds;
uint32_t nanoseconds;
uint8_t pad[4];

};
OFP_ASSERT(sizeof(struct onf_time) == 16);

The time format defined in this extension is based on the one defined in [2]. It consists of two sub-
fields; a seconds field, representing the integer portion of time in seconds1, and a nanoseconds field,
representing the fractional portion of time in nanoseconds, i.e., 0 ≤ nanoseconds ≤ (109 − 1).

As defined in [2], time is measured according to the International Atomic Time (TAI) timescale. The
epoch is defined as 1 January 1970 00:00:00 TAI.

5 Time Bundle property

This extension defines the following bundle property type:

/* Bundle property types. */
enum onf_bundle_prop_exp_type {

ONFBUP_ET_TIME = 3400, /* Time bundle property. */
};

The action ONFBUP_ET_TIME uses the following structure:

/* Bundle property structure for ONF_ET_BPROP_TIME. */
struct onf_bundle_prop_time {

uint16_t type; /* ONF_ET_BPT_EXPERIMENTER. */
uint16_t length; /* Length in bytes = 32. */
uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */
uint32_t exp_type; /* ONFBUP_ET_TIME. */
uint8_t pad[4]; /* Align to 64 bits. */

struct onf_time scheduled_time; /* The scheduled time at which the switch
should apply the bundle. */

};
OFP_ASSERT(sizeof(struct onf_bundle_prop_time) == 32);

The type field must be set to ONF_ET_BPT_EXPERIMENTER.

The experimenter field is the Experimenter ID (see 3).

The exp_type field is set to ONFBUP_ET_TIME.

The scheduled_time field is the time at which the bundle should be executed.

1The seconds field in IEEE 1588 is 48 bits long. The seconds field used in this extension is a 64-bit field, but it has the
same semantics as the seconds field in the IEEE 1588 time format.

7 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

The time extension allows bundle commit messages to include a time property, defining when the bundle
should be executed. If a ONF_ET_BUNDLE_CONTROL message of type ONF_BCT_COMMIT_REQUEST contains
a ONFBUP_ET_TIME property, the bundle must be scheduled to be applied at the time specified in the
time property. This property should not be included in other bundle messages.

6 Bundle Feature multipart

This extension defines the following multipart type:

/* Bundle property types. */
enum onfmul_exp_type {

ONFMUL_ET_BUNDLE_FEAT = 3400, /* Bundle feature request/reply multipart. */
};

6.1 Bundle Features request

The multipart request ONFMUL_ET_BUNDLE_FEAT uses the following structure:

/* Body for ofp_multipart_request for ONFMUL_ET_BUNDLE_FEAT.
* Multipart type is OFPMP_EXPERIMENTER. */

struct onf_multipart_bundle_feat_request {
uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */
uint32_t exp_type; /* ONFMUL_ET_BUNDLE_FEAT. */
uint32_t feature_request_flags; /* Bitmap of "onf_bundle_feature_flags". */
uint8_t pad[4];

/* Bundle features property list - 0 or more. */
struct onf_bundle_features_prop_header properties[0];

};
OFP_ASSERT(sizeof(struct onf_multipart_bundle_feat_request) == 16);

The type of the multipart request must be set to OFPMP_EXPERIMENTER.

The experimenter field is the Experimenter ID (see 3).

The exp_type field is set to ONFMUL_ET_BUNDLE_FEAT.

The feature_request_flags field is a bitmap that defines which properties are included int eh request.
It may include a combination of the following flags:

/* Flags used in a bundle features request. */
enum onf_bundle_feature_flags {

ONF_BF_TIMESTAMP = 1 << 0, /* When enabled, the current request
* includes a timestamp, using
* the time property. */

ONF_BF_TIME_SET_SCHED = 1 << 1, /* When enabled, the current request
* includes the sched_max_future
* and sched_max_past parameters, using
* the time property. */

};

8 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

If at least one of the flags ONF_BF_TIMESTAMP or ONF_BF_TIME_SET_SCHED is set, the bundle features
request includes a time property.

The properties field is a list of bundle feature properties. The list of properties defined by this
extension is specified in Section 6.3.

6.2 Bundle Features reply

When the switch successfully process a bundle features request, it sends a bundle feature reply to the
controller. The multipart reply ONFMUL_ET_BUNDLE_FEAT uses the following structure:

/* Body for ofp_multipart_reply for ONFMUL_ET_BUNDLE_FEAT.
* Multipart type is OFPMP_EXPERIMENTER. */

struct onf_multipart_bundle_feat_reply {
uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */
uint32_t exp_type; /* ONFMUL_ET_BUNDLE_FEAT. */
uint16_t capabilities; /* Bitmap of "onf_bundle_flags". */
uint8_t pad[6];

/* Bundle features property list - 0 or more. */
struct onf_bundle_features_prop_header properties[0];

};
OFP_ASSERT(sizeof(struct onf_multipart_bundle_feat_reply) == 16);

The type of the multipart request must be set to OFPMP_EXPERIMENTER.

The experimenter field is the Experimenter ID (see 3).

The exp_type field is set to ONFMUL_ET_BUNDLE_FEAT.

The capabilities field is a bitmap that defines which capabilities are supported by bundles. It may
include a combination of the flags defined by onf_bundle_flags.

The properties field is a list of bundle feature properties. The list of properties defined by this
extension is specified in Section 6.3.

6.3 Bundle Features Properties

The list of bundle property types that are currently defined are:

/* Bundle features property types. */
enum onf_bundle_features_prop_type {

OFPTMPBF_TIME_CAPABILITY = 0x1, /* Time feature property. */
OFPTMPBF_EXPERIMENTER = 0xFFFF, /* Experimenter property. */

};

A property definition contains the property type, length, and any associated data:

9 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

/* Common header for all bundle feature Properties */
struct onf_bundle_features_prop_header {

uint16_t type; /* One of OFPTMPBF_*. */
uint16_t length; /* Length in bytes of this property. */

};
OFP_ASSERT(sizeof(struct onf_bundle_features_prop_header) == 4);

6.4 Bundle Features time property

The OFPTMPBF_TIME_CAPABILITY property uses the following structure and fields:

struct onf_bundle_features_prop_time {
uint16_t type; /* OFPTMPBF_TIME_CAPABILITY. */
uint16_t length; /* Length in bytes of this property. */
uint8_t pad[4];

struct onf_time sched_accuracy; /* The scheduling accuracy, i.e., how
* accurately the switch can perform
* a scheduled commit. This field is used
* only in bundle features replies, and is
* ignored in bundle features requests. */

struct onf_time sched_max_future; /* The maximal difference between the
* scheduling time and the current
* time. */

struct onf_time sched_max_past; /* If the scheduling time occurs in the
* past, defines the maximal difference
* between the current time and the
* scheduling time. */

struct onf_time timestamp; /* Indicates the time during the
* transmission of this message. */

};
OFP_ASSERT(sizeof(struct onf_bundle_features_prop_time) == 72);

The type field must be set to OFPTMPBF_TIME_CAPABILITY.

In a bundle features request, the fields of the property are defined as such:

• The sched_accuracy field is relevant only to bundle features replies, and the switch must ignore
this field in a bundle features request.

• The sched_max_future and sched_max_past fields define the range of acceptable schedules. A
switch that receives a bundle features request with ONF_BF_TIME_SET_SCHED set should attempt to
change its scheduling tolerance values according to the sched_max_future and sched_max_past
values from the time property. If the switch does not successfully update its scheduling tolerance
values, it replies with an error message.

• The timestamp fiels indicates the controller’s time during the transmission of this message. A
switch that receives a bundle features request with ONF_BF_TIMESTAMP set, may use the received
timestamp to roughly estimate the offset between its clock and the controller’s clock.

In a bundle features reply, the fields of the property are defined as such:

10 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

• The sched_accuracy field indicates the estimated scheduling accuracy of the switch. For example,
if the value of sched_accuracy is 1000000 nanoseconds (1 ms), it means that when the switch
receives a bundle commit scheduled to time Ts, the commit will in practice be invoked at Ts±1 ms.
The factors that affect the scheduling accuracy are discussed in Section 2.3.

• The sched_max_future and sched_max_past fields indicates the scheduling tolerance values of
the switch. If the corresponding bundle features request has the ONF_BF_TIME_SET_SCHED flag
enabled, these two fields are identical to the ones sent be the controller in the request.

• The timestamp field indicates the switch’s time during the transmission of this feature reply. Every
bundle feature reply that includes the time property also includes a timestamp. The timestamp
may be used by the controller to get a rough estimate of whether the switch’s clock is synchronized
to the controller’s.

6.5 Bundle Features experimenter property

The OFPTMPBF_EXPERIMENTER property uses the following structure and fields:

/* Experimenter bundle features property */
struct onf_bundle_features_prop_experimenter {

uint16_t type; /* OFPTMPBF_EXPERIMENTER. */
uint16_t length; /* Length in bytes of this property. */
uint32_t experimenter; /* Experimenter ID which takes the same

form as in struct
ofp_experimenter_header. */

uint32_t exp_type; /* Experimenter defined. */
/* Followed by:
* - Exactly (length - 12) bytes containing the experimenter data, then
* - Exactly (length + 7)/8*8 - (length) (between 0 and 7)
* bytes of all-zero bytes */

uint32_t experimenter_data[0];
};
OFP_ASSERT(sizeof(struct onf_bundle_features_prop_experimenter) == 12);

The experimenter field is the Experimenter ID, which takes the same form as in struct
ofp_experimenter.

7 Time Bundle error message

The following errors are defined by this extension:

/* Error codes */
enum onf_error_exp_type {

ONFERR_ET_SCHED_NOT_SUPPORTED = 3400, /* Scheduled commit was received and
* scheduling is not supported. */

ONFERR_ET_SCHED_FUTURE = 3401, /* Scheduled commit time exceeds upper
* bound. */

ONFERR_ET_SCHED_PAST = 3402, /* Scheduled commit time exceeds lower
* bound. */

11 © 2014; The Open Networking Foundation

OpenFlow Time Extension Version 0.7

ONFERR_ET_MULTIPART_BAD_SCHED = 3403, /* Switch received a bundle features
* request and failed to update
* the scheduling tolerance. */

};

The error ONFERR_ET_SCHED_NOT_SUPPORTED, ONFERR_ET_SCHED_FUTURE, ONFERR_ET_SCHED_PAST and
ONFERR_ET_MULTIPART_BAD_SCHED use the following structure:

/* Message structure for all errors. */
struct onf_error_msg {

struct ofp_header header;
uint16_t type; /* OFPET_EXPERIMENTER. */
uint16_t exp_type; /* One of ONFERR_ET_* above. */
uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */
uint8_t data[0]; /* Up to 64 bytes of failed request. */

};
OFP_ASSERT(sizeof(struct onf_error_header) == sizeof(struct ofp_error_experimenter_msg));

The type field must be set to OFPET_EXPERIMENTER.

The experimenter field is the Experimenter ID (see 3).

The data fields contains a copy of the failed request message, truncated to 64 bytes.

The exp_type field is set to ONFERR_ET_SCHED_NOT_SUPPORTED, ONFERR_ET_SCHED_FUTURE,
ONFERR_ET_SCHED_PAST and ONFERR_ET_MULTIPART_BAD_SCHED.

When the switch has an error related to the time bundle operation, or related to a bundle features
request, the switch may generate the following errors:

The ONFERR_ET_SCHED_NOT_SUPPORTED code is used when the switch does not support scheduled bundle
execution and receives a commit message with the ONF_BF_TIME flag set.

The ONFERR_ET_SCHED_FUTURE code is used when the switch receives a scheduled commit message and
the scheduling time exceeds the sched_max_future (see Section 2.4).

The ONFERR_ET_SCHED_PAST code is used when the switch receives a scheduled commit message and
the scheduling time exceeds the sched_max_past (see Section 2.4).

The ONFERR_ET_MULTIPART_BAD_SCHED code is used when switch receives a bundle features request
with the ONF_BF_TIME_SET_SCHED flag enabled, and the switch failed to update the scheduling tolerance
values.

References

[1] Open Networking Foundation, “EXT-230 — Bundle Extension,” Version 0.1, 2013.

[2] IEEE TC 9, “1588 IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems Version 2,” 2008.

12 © 2014; The Open Networking Foundation

	Introduction
	How it works
	The Scheduled Bundle Procedure
	Discarding Scheduled Bundles
	Timekeeping and Synchronization
	Scheduling Tolerance

	Copy-Field Experimenter ID
	Time Format
	Time Bundle property
	Bundle Feature multipart
	Bundle Features request
	Bundle Features reply
	Bundle Features Properties
	Bundle Features time property
	Bundle Features experimenter property

	Time Bundle error message

