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Pre-Owl	Cluster	

●  Typically	consist	of	an	odd	number	of	nodes	
●  Netty	used	for	east-west	communication	
●  Custom	eventually	consistent	protocols	for	low	latency	stores	
●  Raft	for	consistent	stores	
●  Distributed	primitives	provided	distributed	collections	and	

concurrency	primitives	
●  Stores	built	on	distributed	primitives	or	custom	protocols	
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Pre-Owl	Cluster	

private ConsistentMultimap<IpPrefix, Route> routes;

@Activate
public void activate() {
   routes = storageService.<IpPrefix, Route>consistentMultimapBuilder()
           .withName("routes")
           .withSerializer(Serializer.using(KryoNamespaces.API))
           .build();
}

public void addRoute(IpPrefix prefix, Route route) {
   routes.put(prefix, route);
}
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Problems?	
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Embedded	Raft	

●  Imposes	strict	cluster	configuration	requirements	with	little	
benefit	

●  Cluster	configuration	must	be	explicitly	defined	
●  A	quorum	of	nodes	must	always	be	maintained	
●  Load	on	Raft	partitions	affects	southbound	protocols	
●  Difficult	and	expensive	to	reconfigure/scale	the	cluster	
●  1/n	primitive	operations	still	require	2	RTT	
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Distributed	Primitives	

●  Distributed	primitives	have	proven	valuable	
●  But	mostly	limited	to	a	single	protocol/consistency	model	
●  Need	for	low-latency	in-memory	primitives	has	been	expressed	
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Distributed	Systems	Code	

●  Lots	of	useful	distributed	systems	code	in	ONOS	
○  Intra-cluster	communication	
○  Cluster	management	
○  Distributed	primitives	
○  Partitioning/sharding/scaling	
○  Eventually	consistent	protocols	

●  But	it’s	being	maintained	by	ONOS	only	for	ONOS	
●  ONOS	could	benefit	from	distributing	it	more	widely	
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Solution?	
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Solution	

●  Re-architect	ONOS	cluster	to	separate	storage	from	control	
●  Scale	and	upgrade	controller	independently	of	storage	layer	
●  Build	an	external	framework	for	cluster	management	
●  Generalize	ONOS	distributed	primitives	in	external	framework	
●  More	users	and	contributors	to	ONOS’	distributed	core	
●  Support	multiple	protocols	for	distributed	primitives	
●  Support	future	architecture	changes	



16	

Solution	
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Solution	

●  Work	began	in	ONOS	1.12	
●  Four	stages:	

○  Migrate	cluster	management/communication	
○  Generalize	distributed	systems	protocols	
○  Migrate	and	adapt	distributed	primitives	
○  Re-architect	the	ONOS	controller	
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Atomix	3	
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What	is	Atomix?	

●  Reactive	Java	framework	for	building	scalable,	fault-tolerant	
distributed	systems	

●  Provides	primitives	for	every	layer	of	distributed	applications	
○  Intra-cluster	communication	
○  Cluster	membership	
○  Replication	
○  Synchronization	
○  Fault-tolerance	
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What	is	Atomix?	

●  Atomix	is	unopinionated	
●  Does	not	prefer	a	specific	cluster	architecture	
●  Instead	provides	options	for	constructing	different	

architectures	
○  Can	be	used	as	a	library,	as	a	service,	or	both	
○  Synchronous	or	asynchronous	programming	models	
○  Node	roles	defined	in	configuration	
○  Reliable	and	unreliable	communication	abstractions	
○  Direct	and	pub-sub	messaging	
○  Protocol	agnostic	data	structures	and	concurrency	control	
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Programmatic	API	

Atomix atomix = Atomix.builder()
   .withMemberId("member-1")
   .withHost("192.168.10.1")
   .build();

atomix.start().join();
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Features	

●  Cluster	membership	
●  Cluster	communication	
●  Distributed	primitives	
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Cluster	Membership	
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ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.getMembers().forEach(member -> {
   atomix.getCommunicationService().send("hello", "Hello!", member.id());
});
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ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
   switch (event.type()) {
       case MEMBER_ADDED:
           memberAdded(event.subject());
           break;
       case MEMBER_REMOVED:
           memberRemoved(event.subject());
           break;
   }
});
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ClusterMembershipService	

●  Join	cluster	
●  Locate	cluster	members	
●  Detect	membership	failures	
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ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
   if (event.type() == ClusterMembershipEvent.Type.MEMBER_ADDED) {
       Member member = event.subject();
       if (member.properties().getProperty("type", "atomix").equals("onos")) {
           // This is an ONOS node!
       }
   }
});
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Cluster	Communication	
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Cluster	Communication	

●  Netty	4.x	
●  Asynchronous	
●  Request-reply	
●  Publish-subscribe	
●  Reliable	&	unreliable	
●  Multicast	
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ClusterCommunicationService	

●  For	location	aware	protocols	
●  Topic-based	
●  Request-reply	
●  Unicast	
●  Multicast	
●  Broadcast	
●  Over	TCP	or	UDP	
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ClusterEventService	

●  For	service-oriented	architectures	
●  Topic-based	
●  Request-reply	
●  Unicast	
●  Multicast	
●  Broadcast	
●  Load	balanced	over	TCP	
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ClusterCommunicationService	

ClusterCommunicationService communicationService = atomix.getCommunicationService();

communicationService.subscribe("hello", this::sayHello);
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ClusterCommunicationService	

ClusterCommunicationService communicationService = atomix.getCommunicationService();

MemberId memberId = MemberId.from("atomix-2");
communicationService.send("hello", "Hello!", memberId)
   .thenAccept(response -> {
       LOGGER.info("{} said {}", memberId, response);
   });
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Distributed	Primitives	
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Distributed	Primitives	

●  Cluster-wide	replicated	data	structures	and	synchronization	
primitives	

●  Synchronous	and	asynchronous	implementations	
●  Map	
●  Set	
●  Tree	
●  Lock	
●  Semaphore	
●  Leader	election	
●  etc	
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   ...
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");
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Distributed	Primitives	

DistributedSet<String> set = atomix.<String>setBuilder("my-set")
   ...
   .build();

if (set.remove("foo")) {
  set.add("bar");
}
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Distributed	Primitives	

AtomicCounter counter = atomix.atomicCounterBuilder("my-counter")
   ...
   .build();

long value = counter.incrementAndGet();
counter.compareAndSet(value, value + 1);
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Distributed	Primitives	

// Create a distributed lock primitive.
DistributedLock lock = atomix.lockBuilder("my-lock")
   ...
   .build();

// Acquire the lock then do some work and release it.
lock.lock();
try {
  doWork();
} finally {
  lock.unlock();
}
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Distributed	Primitives	
// Create a leadership election.
LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
   ...
   .build();

// Get the local member identifier.
MemberId localMemberId = atomix.getMembershipService().getLocalMember().id();

// Run the local member ID for leadership.
Leadership<MemberId> leadership = election.run(localMemberId);

// Send a message to the current leader to do some work.
atomix.getCommunicationService().send("do-work", new Work(), leadership.leader().id())
   .whenCompleteAsync((response, error) -> {
     if (error == null) {
       LOGGER.info("Work complete!");
     }
   });
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Distributed	Primitives	

LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
   ...
   .build();

election.addListener(event -> {
  MemberId newLeaderId = event.newLeadership().leader().id();
  LOGGER.info("A leadership change event occurred. New leader: {}", newLeaderId);
});
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-
map")
   ...
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

AsyncDistributedMap<String, String> asyncMap = map.async();

asyncMap.put("onos", "awesome").thenRun(() -> LOGGER.info("Write complete"));
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So	what?	
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So	what?	

●  Configuration	
●  Deployment	
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Configuration	
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Configuration	API	
cluster {
  node {
    id: atomix-1
    host: 192.168.20.1
  }

  multicast.enabled: true
  discovery {
    type: multicast
    broadcastInterval: 1s
  }
}

partitionGroups.raft {
  type: raft
  partitions: 3
  partitionSize: 3
  storage.level: mapped
  members: [atomix-1, atomix-2, atomix-3]
}
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Cluster	Management	
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Cluster	Management	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.getMembers().forEach(member -> {
   atomix.getCommunicationService().send("hello", "Hello!", member.id());
});
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Cluster	Management	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
   switch (event.type()) {
       case MEMBER_ADDED:
           memberAdded(event.subject());
           break;
       case MEMBER_REMOVED:
           memberRemoved(event.subject());
           break;
   }
});
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Cluster	Management	

●  Node	discovery	
●  Cluster	membership	
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Node	Discovery	

●  Form	new	cluster	
●  Locate	existing	cluster	
●  Pluggable	abstraction	
●  Multiple	implementations	
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Node	Discovery	
cluster {
 node {
   id: member-1
   host: 192.168.10.1
 }

 discovery {
   type: bootstrap
   nodes.1 {
     id: member-1
     host: 192.168.10.1
   }
   nodes.2 {
     id: member-2
     host: 192.168.10.2
   }
   nodes.3 {
     id: member-3
     host: 192.168.10.3
   }
 }
}
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Node	Discovery	

cluster {
 node {
   id: member-1
   host: 192.168.10.1
 }

 multicast.enabled: true

 discovery {
   type: multicast
   broadcastInterval: 1s
 }
}
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Node	Discovery	

cluster {
 node {
   id: member-1
   host: 192.168.10.1
 }

 discovery {
   type: dns
   service: onos
 }
}
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Cluster	Membership	

●  Join	cluster	
●  Find	new	members	
●  Detect	failures	
●  Pluggable	abstraction	
●  Multiple	implementations	
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Cluster	Membership	

cluster.protocol {
   type: heartbeat
   heartbeatInterval: 250ms
   failureThreshold: 12
}
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Cluster	Membership	

Atomix atomix = Atomix.builder()
   .withMemberId("member-1")
   .withHost("192.168.10.1")
   .withMulticastEnabled()
   .withMembershipProvider(MulticastDiscoveryProvider.builder()
       .withBroadcastInterval(Duration.ofSeconds(1))
       .build())
   .withMembershipProtocol(HeartbeatMembershipProtocol.builder()
       .withHeartbeatInterval(Duration.ofMillis(250))
       .build())
   .build();

atomix.start().join();
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Heartbeat	Protocol	
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Heartbeat	Protocol	

●  Send	constant	heartbeats	to	all	peers	
●  If	a	heartbeat	is	not	received,	mark	peer	dead	
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Heartbeat	Protocol	
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62	

Heartbeat	Protocol	



63	

Heartbeat	Protocol	



64	

Heartbeat	Protocol	



65	

Heartbeat	Protocol	



66	

Heartbeat	Protocol	
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Heartbeat	Protocol	
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Heartbeat	Protocol	

cluster.protocol {
   type: heartbeat
   heartbeatInterval: 250ms
   failureThreshold: 12
}
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Heartbeat	Protocol	
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Heartbeat	Protocol	
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Heartbeat	Protocol	

●  Does	not	scale	well	
●  Exponential	growth	in	network	traffic	
●  Does	not	handle	simple	network	partitions	
●  More	frequent	false	positives	
●  But	can	detect	failures	more	quickly	
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SWIM	Protocol	
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SWIM	Protocol	

●  Reduce	network	load	
●  Improve	scalability	
●  Reduce	false	positives	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	
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SWIM	Protocol	

cluster.protocol {
   type: swim
   probeInterval: 500ms
   suspectProbes: 2
   gossipFanout: 2
   failureTimeout: 5s
}
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SWIM	Protocol	

●  Scales	well	
●  Linear	growth	in	network	traffic	
●  Handles	basic	network	partitions	
●  Avoids	false	positives	
●  But	may	take	longer	to	detect	failures	
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Replication	Protocols	
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Replication	Protocols	

●  Raft	
●  Primary-backup	
●  Distributed	log	
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Raft	Protocol	
	

●  Follower	
○  Receives	replicated	entries	from	leader	
○  Uses	a	timer	to	determine	when	leader	is	unavailable	

●  Candidate	
○  Start	an	election	
○  Request	and	count	votes	from	peers	

●  Leader	
○  Receive	client	requests	
○  Append	entries	to	leader	and	follower	logs	
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Raft	Protocol	
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Raft	Protocol	
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Primary	Backup	Protocol	

●  Strong	leader	
●  Elect	a	primary	
●  Replicate	state	changes	from	primary	to	n	backups	
●  Changes	committed	once	replicated	to	r	backups	
●  Leader	election	done	through	Raft	
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Primary	Backup	Protocol	
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Distributed	Log	Protocol	

●  Strong	leader	
●  Elect	a	primary	
●  Replicate	log	entries	from	primary	to	n	backups	
●  Entries	committed	once	replicated	to	r	backups	
●  Leader	election	done	through	Raft	
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Distributed	Log	Protocol	
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Partition	Groups	
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Partition	Groups	

●  Leader-based	protocols	do	not	scale	well	
●  Must	shard	protocols	to	scale	
●  Run	multiple	instances	of	each	protocol	in	a	group	
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Partition	Groups	
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Partition	Groups	
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Partition	Groups	
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Partition	Groups	

●  Partition	groups	are	an	abstraction	for	configuring	sharded	
instances	of	a	protocol	
○  RaftPartitionGroup	
○  PrimaryBackupPartitionGroup	
○  LogPartitionGroup	

●  Partition	groups	may	reside	on	any	node	according	to	its	
configuration	
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Partition	Groups	

partitionGroups.raft {
   type: raft
   partitions: 3
   storage.level: mapped
   members: [atomix-1, atomix-2, atomix-3]
}
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Partition	Groups	
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Partition	Groups	
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Partition	Groups	
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Partition	Groups	

●  Management	group	
○  A	single	required	group	
○  Primary	election	
○  Primitive	management	
○  Transaction	management	

●  Primitive	groups	
○  Any	number	of	optional	groups	
○  Store	distributed	primitives	
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Partition	Groups	

managementGroup {
  type: raft
  partitions: 1
  members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.raft {
  type: raft
  partitions: 3
  partitionSize: 3
  storage.level: mapped
  members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.data {
  type: primary-backup
  partitions: 32
}
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Partition	Groups	
Atomix atomix = Atomix.builder()
   .withMemberId("member-1")
   .withManagementGroup(RaftPartitionGroup.builder("system")
       .withNumPartitions(1)
       .withMembers("member-1", "member-2", "member-3")
       .build())
   .withPartitionGroups(
       RaftPartitionGroup.builder("raft")
           .withNumPartitions(3)
           .withPartitionSize(3)
           .withStorageLevel(StorageLevel.MAPPED)
           .withMembers("member-1", "member-2", "member-3")
           .build(),
       PrimaryBackupPartitionGroup.builder("data")
           .withNumPartitions(32)
           .withMemberGroupStrategy(MemberGroupStrategy.RACK_AWARE)
           .build())
   .build();

atomix.start().join();



132	

Distributed	Primitives	
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Distributed	Primitives	

●  Interface	to	pre-defined	replicated	state	machines	
●  Backed	by	a	configurable	protocol	
●  Stored	on	a	chosen	partition	group	
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.SEQUENTIAL)
       .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.SEQUENTIAL)
       .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

Primitive type 

Protocol 

Configuration 

Primitive name 
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.SEQUENTIAL)
       .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

Multi-Raft Protocol 
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(MultiPrimaryProtocol.builder()
       .withBackups(2)
       .withReplication(Replication.ASYNCHRONOUS)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

Multi-Primary Protocol 
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(DistributedLogProtocol.builder()
       .withReplication(Replication.ASYNCHRONOUS)
       .withRecovery(Recovery.RECOVER)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

Distributed Log Protocol 
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Distributed	Primitives	
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Distributed	Primitives	



141	

Distributed	Primitives	
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Distributed	Primitives	
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Distributed	Primitives	

DistributedSet<String> set = atomix.<String>setBuilder("my-set")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.SEQUENTIAL)
       .withCommunicationStrategy(CommunicationStrategy.LEADER)
       .build())
   .build();

if (set.remove("foo")) {
  set.add("bar");
}



144	

Distributed	Primitives	

AtomicCounter counter = atomix.atomicCounterBuilder("my-counter")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.LINEARIZABLE)
       .withCommunicationStrategy(CommunicationStrategy.LEADER)
       .build())
   .build();

long value = counter.incrementAndGet();
counter.compareAndSet(value, value + 1);
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Distributed	Primitives	

// Create a distributed lock primitive.
DistributedLock lock = atomix.lockBuilder("my-lock")
   .withProtocol(MultiRaftProtocol.builder()
       .withMaxTimeout(Duration.ofSeconds(5))
       .withReadConsistency(ReadConsistency.LINEARIZABLE)
       .withCommunicationStrategy(CommunicationStrategy.LEADER)
       .build())
   .build();

// Acquire the lock then do some work and release it.
lock.lock();
try {
  doWork();
} finally {
  lock.unlock();
}
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Distributed	Primitives	
// Create a leadership election.
LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
   .withProtocol(MultiRaftProtocol.builder()
       .withMaxTimeout(Duration.ofSeconds(5))
       .withReadConsistency(ReadConsistency.LINEARIZABLE)
       .withCommunicationStrategy(CommunicationStrategy.LEADER)
       .build())
   .build();

// Get the local member identifier.
MemberId localMemberId = atomix.getMembershipService().getLocalMember().id();

// Run the local member ID for leadership.
Leadership<MemberId> leadership = election.run(localMemberId);

// Send a message to the current leader to do some work.
atomix.getCommunicationService().send("do-work", new Work(), leadership.leader().id())
   .whenCompleteAsync((response, error) -> {
     if (error == null) {
       LOGGER.info("Work complete!");
     }
   });
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Distributed	Primitives	

LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
   .withProtocol(MultiRaftProtocol.builder()
       .withMaxTimeout(Duration.ofSeconds(5))
       .withReadConsistency(ReadConsistency.LINEARIZABLE)
       .withCommunicationStrategy(CommunicationStrategy.LEADER)
       .build())
   .build();

election.addListener(event -> {
  MemberId newLeaderId = event.newLeadership().leader().id();
  LOGGER.info("A leadership change event occurred. New leader: {}", newLeaderId);
});
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Distributed	Primitives	

DistributedLog<Entry> log = atomix.<Entry>logBuilder()
   .withProtocol(DistributedLogProtocol.builder()
       .withConsistency(Consistency.SEQUENTIAL)
       .withRecovery(Recovery.RECOVER)
       .build())
   .build();

log.produce(new Entry("Hello world!"));

log.consume(record -> {
 Entry entry = record.value();
 LOGGER.info("Entry {} was appended to the log", entry);
});
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Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
   .withProtocol(MultiRaftProtocol.builder()
       .withReadConsistency(ReadConsistency.SEQUENTIAL)
       .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
       .build())
   .withCacheEnabled()
   .build();

map.put("onos", "awesome");

AsyncDistributedMap<String, String> asyncMap = map.async();

asyncMap.put("onos", "awesome").thenRun(() -> LOGGER.info("Write complete"));
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Deployment	
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Agent	

./bin/atomix-agent -c atomix.conf -m member-1 -a 192.168.20.1:5679
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Cluster	Architecture	
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Cluster	Architecture	
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Owl	Cluster	Architecture	
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Owl	Cluster	Architecture	
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Owl	Cluster	Architecture	
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Owl	Cluster	Architecture	
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Owl	Cluster	Architecture	
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Owl	Cluster	Architecture	

{
 "nodes": [
   {
     "id": "onos-1",
     "ip": "192.168.20.1",
     "port": 9876
   },
   {
     "id": "onos-2",
     "ip": "192.168.20.2",
     "port": 9876
   },
   {
     "id": "onos-3",
     "ip": "192.168.20.3",
     "port": 9876
   }
 ]
}
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Owl	Cluster	Architecture	
{
 "partitions": [
   {
     "id": 1,
     "members": [
       "onos-1",
       "onos-2",
       "onos-3"
     ]
   },
   {
     "id": 2,
     "members": [
       "onos-1",
       "onos-2",
       "onos-3"
     ]
   },
   {
     "id": 3,
     "members": [
       "onos-1",
       "onos-2",
       "onos-3"
     ]
   }
 ]
}
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Owl	Cluster	Architecture	
cluster {
 node {
   id: ${atomix.node.id}
   host: ${atomix.node.host}
 }

 discovery {
   type: bootstrap
   # ...
 }

 protocol {
   type: swim
   # ...
 }
}

managementGroup {
 type: raft
 partitions: 1
 members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.raft {
 type: raft
 partitions: 3
 storage.level: mapped
 members: [atomix-1, atomix-2, atomix-3]
}
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Owl	Cluster	Architecture	
{
 "name": "onos",
 "node": {
   "id": "onos-1",
   "host": "192.168.20.1",
   "port": "9876"
 },
 "storage": [
   {
     "id": "atomix-1",
     "ip": "192.168.10.1",
     "port": 5679
   },
   {
     "id": "atomix-2",
     "ip": "192.168.10.2",
     "port": 5679
   },
   {
     "id": "atomix-3",
     "ip": "192.168.10.3",
     "port": 5679
   }
 ]
}
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Service	Discovery	
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Service	Discovery	
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Scaling	
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Scaling	
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188	

Rolling	Upgrades	



189	

Rolling	Upgrades	



190	

Rolling	Upgrades	
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Compatibility	

●  ONOS	1.14	and	1.15	compatible	with	any	Atomix	3.0.x	release	
●  ONOS	2.0	compatible	with	any	Atomix	3.1	release	
●  Experimental	REST	API	only	accessible	via	Atomix	agent	
●  Primitive	protocols	not	currently	exposed	in	ONOS	API	
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Resources	

●  ONOS	Website:	https://onosproject.org	
●  ONOS	GitHub:	https://github.com/opennetworkinglab/onos	
●  Atomix	Website:	https://atomix.io	
●  Atomix	GitHub:	https://github.com/atomix/atomix	


