
Distributed	Systems	in	ONOS	with	Atomix	3	
Architecture	and	Implementation	

Jordan	Halterman	

Member	of	Technical	Staff	@	ONF	

1	

Distributed	Systems	in	ONOS	with	Atomix	3	

●  Pre-Owl	Architecture	Review	
●  Problems	and	Solutions	
●  Atomix	3	Features	and	Implementation	
●  Owl	Architecture	

2	

3	

Pre-Owl	Cluster	Architecture	

4	

Pre-Owl	Cluster	

5	

Pre-Owl	Cluster	

6	

Pre-Owl	Cluster	

7	

Pre-Owl	Cluster	

8	

Pre-Owl	Cluster	

●  Typically	consist	of	an	odd	number	of	nodes	
●  Netty	used	for	east-west	communication	
●  Custom	eventually	consistent	protocols	for	low	latency	stores	
●  Raft	for	consistent	stores	
●  Distributed	primitives	provided	distributed	collections	and	

concurrency	primitives	
●  Stores	built	on	distributed	primitives	or	custom	protocols	

9	

Pre-Owl	Cluster	

private ConsistentMultimap<IpPrefix, Route> routes;

@Activate
public void activate() {
 routes = storageService.<IpPrefix, Route>consistentMultimapBuilder()
 .withName("routes")
 .withSerializer(Serializer.using(KryoNamespaces.API))
 .build();
}

public void addRoute(IpPrefix prefix, Route route) {
 routes.put(prefix, route);
}

10	

Problems?	

11	

Embedded	Raft	

●  Imposes	strict	cluster	configuration	requirements	with	little	
benefit	

●  Cluster	configuration	must	be	explicitly	defined	
●  A	quorum	of	nodes	must	always	be	maintained	
●  Load	on	Raft	partitions	affects	southbound	protocols	
●  Difficult	and	expensive	to	reconfigure/scale	the	cluster	
●  1/n	primitive	operations	still	require	2	RTT	

12	

Distributed	Primitives	

●  Distributed	primitives	have	proven	valuable	
●  But	mostly	limited	to	a	single	protocol/consistency	model	
●  Need	for	low-latency	in-memory	primitives	has	been	expressed	

13	

Distributed	Systems	Code	

●  Lots	of	useful	distributed	systems	code	in	ONOS	
○  Intra-cluster	communication	
○  Cluster	management	
○  Distributed	primitives	
○  Partitioning/sharding/scaling	
○  Eventually	consistent	protocols	

●  But	it’s	being	maintained	by	ONOS	only	for	ONOS	
●  ONOS	could	benefit	from	distributing	it	more	widely	

14	

Solution?	

15	

Solution	

●  Re-architect	ONOS	cluster	to	separate	storage	from	control	
●  Scale	and	upgrade	controller	independently	of	storage	layer	
●  Build	an	external	framework	for	cluster	management	
●  Generalize	ONOS	distributed	primitives	in	external	framework	
●  More	users	and	contributors	to	ONOS’	distributed	core	
●  Support	multiple	protocols	for	distributed	primitives	
●  Support	future	architecture	changes	

16	

Solution	

17	

Solution	

●  Work	began	in	ONOS	1.12	
●  Four	stages:	

○  Migrate	cluster	management/communication	
○  Generalize	distributed	systems	protocols	
○  Migrate	and	adapt	distributed	primitives	
○  Re-architect	the	ONOS	controller	

18	

Atomix	3	

19	

What	is	Atomix?	

●  Reactive	Java	framework	for	building	scalable,	fault-tolerant	
distributed	systems	

●  Provides	primitives	for	every	layer	of	distributed	applications	
○  Intra-cluster	communication	
○  Cluster	membership	
○  Replication	
○  Synchronization	
○  Fault-tolerance	

20	

What	is	Atomix?	

●  Atomix	is	unopinionated	
●  Does	not	prefer	a	specific	cluster	architecture	
●  Instead	provides	options	for	constructing	different	

architectures	
○  Can	be	used	as	a	library,	as	a	service,	or	both	
○  Synchronous	or	asynchronous	programming	models	
○  Node	roles	defined	in	configuration	
○  Reliable	and	unreliable	communication	abstractions	
○  Direct	and	pub-sub	messaging	
○  Protocol	agnostic	data	structures	and	concurrency	control	

21	

Programmatic	API	

Atomix atomix = Atomix.builder()
 .withMemberId("member-1")
 .withHost("192.168.10.1")
 .build();

atomix.start().join();

22	

Features	

●  Cluster	membership	
●  Cluster	communication	
●  Distributed	primitives	

23	

Cluster	Membership	

24	

ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.getMembers().forEach(member -> {
 atomix.getCommunicationService().send("hello", "Hello!", member.id());
});

25	

ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
 switch (event.type()) {
 case MEMBER_ADDED:
 memberAdded(event.subject());
 break;
 case MEMBER_REMOVED:
 memberRemoved(event.subject());
 break;
 }
});

26	

ClusterMembershipService	

●  Join	cluster	
●  Locate	cluster	members	
●  Detect	membership	failures	

27	

ClusterMembershipService	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
 if (event.type() == ClusterMembershipEvent.Type.MEMBER_ADDED) {
 Member member = event.subject();
 if (member.properties().getProperty("type", "atomix").equals("onos")) {
 // This is an ONOS node!
 }
 }
});

28	

Cluster	Communication	

29	

Cluster	Communication	

●  Netty	4.x	
●  Asynchronous	
●  Request-reply	
●  Publish-subscribe	
●  Reliable	&	unreliable	
●  Multicast	

30	

ClusterCommunicationService	

●  For	location	aware	protocols	
●  Topic-based	
●  Request-reply	
●  Unicast	
●  Multicast	
●  Broadcast	
●  Over	TCP	or	UDP	

31	

ClusterEventService	

●  For	service-oriented	architectures	
●  Topic-based	
●  Request-reply	
●  Unicast	
●  Multicast	
●  Broadcast	
●  Load	balanced	over	TCP	

32	

ClusterCommunicationService	

ClusterCommunicationService communicationService = atomix.getCommunicationService();

communicationService.subscribe("hello", this::sayHello);

33	

ClusterCommunicationService	

ClusterCommunicationService communicationService = atomix.getCommunicationService();

MemberId memberId = MemberId.from("atomix-2");
communicationService.send("hello", "Hello!", memberId)
 .thenAccept(response -> {
 LOGGER.info("{} said {}", memberId, response);
 });

34	

Distributed	Primitives	

35	

Distributed	Primitives	

●  Cluster-wide	replicated	data	structures	and	synchronization	
primitives	

●  Synchronous	and	asynchronous	implementations	
●  Map	
●  Set	
●  Tree	
●  Lock	
●  Semaphore	
●  Leader	election	
●  etc	

36	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 ...
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

37	

Distributed	Primitives	

DistributedSet<String> set = atomix.<String>setBuilder("my-set")
 ...
 .build();

if (set.remove("foo")) {
 set.add("bar");
}

38	

Distributed	Primitives	

AtomicCounter counter = atomix.atomicCounterBuilder("my-counter")
 ...
 .build();

long value = counter.incrementAndGet();
counter.compareAndSet(value, value + 1);

39	

Distributed	Primitives	

// Create a distributed lock primitive.
DistributedLock lock = atomix.lockBuilder("my-lock")
 ...
 .build();

// Acquire the lock then do some work and release it.
lock.lock();
try {
 doWork();
} finally {
 lock.unlock();
}

40	

Distributed	Primitives	
// Create a leadership election.
LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
 ...
 .build();

// Get the local member identifier.
MemberId localMemberId = atomix.getMembershipService().getLocalMember().id();

// Run the local member ID for leadership.
Leadership<MemberId> leadership = election.run(localMemberId);

// Send a message to the current leader to do some work.
atomix.getCommunicationService().send("do-work", new Work(), leadership.leader().id())
 .whenCompleteAsync((response, error) -> {
 if (error == null) {
 LOGGER.info("Work complete!");
 }
 });

41	

Distributed	Primitives	

LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
 ...
 .build();

election.addListener(event -> {
 MemberId newLeaderId = event.newLeadership().leader().id();
 LOGGER.info("A leadership change event occurred. New leader: {}", newLeaderId);
});

42	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-
map")
 ...
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

AsyncDistributedMap<String, String> asyncMap = map.async();

asyncMap.put("onos", "awesome").thenRun(() -> LOGGER.info("Write complete"));

43	

So	what?	

44	

So	what?	

●  Configuration	
●  Deployment	

45	

Configuration	

46	

Configuration	API	
cluster {
 node {
 id: atomix-1
 host: 192.168.20.1
 }

 multicast.enabled: true
 discovery {
 type: multicast
 broadcastInterval: 1s
 }
}

partitionGroups.raft {
 type: raft
 partitions: 3
 partitionSize: 3
 storage.level: mapped
 members: [atomix-1, atomix-2, atomix-3]
}

47	

Cluster	Management	

48	

Cluster	Management	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.getMembers().forEach(member -> {
 atomix.getCommunicationService().send("hello", "Hello!", member.id());
});

49	

Cluster	Management	

ClusterMembershipService membershipService = atomix.getMembershipService();

membershipService.addListener(event -> {
 switch (event.type()) {
 case MEMBER_ADDED:
 memberAdded(event.subject());
 break;
 case MEMBER_REMOVED:
 memberRemoved(event.subject());
 break;
 }
});

50	

Cluster	Management	

●  Node	discovery	
●  Cluster	membership	

51	

Node	Discovery	

●  Form	new	cluster	
●  Locate	existing	cluster	
●  Pluggable	abstraction	
●  Multiple	implementations	

52	

Node	Discovery	
cluster {
 node {
 id: member-1
 host: 192.168.10.1
 }

 discovery {
 type: bootstrap
 nodes.1 {
 id: member-1
 host: 192.168.10.1
 }
 nodes.2 {
 id: member-2
 host: 192.168.10.2
 }
 nodes.3 {
 id: member-3
 host: 192.168.10.3
 }
 }
}

53	

Node	Discovery	

cluster {
 node {
 id: member-1
 host: 192.168.10.1
 }

 multicast.enabled: true

 discovery {
 type: multicast
 broadcastInterval: 1s
 }
}

54	

Node	Discovery	

cluster {
 node {
 id: member-1
 host: 192.168.10.1
 }

 discovery {
 type: dns
 service: onos
 }
}

55	

Cluster	Membership	

●  Join	cluster	
●  Find	new	members	
●  Detect	failures	
●  Pluggable	abstraction	
●  Multiple	implementations	

56	

Cluster	Membership	

cluster.protocol {
 type: heartbeat
 heartbeatInterval: 250ms
 failureThreshold: 12
}

57	

Cluster	Membership	

Atomix atomix = Atomix.builder()
 .withMemberId("member-1")
 .withHost("192.168.10.1")
 .withMulticastEnabled()
 .withMembershipProvider(MulticastDiscoveryProvider.builder()
 .withBroadcastInterval(Duration.ofSeconds(1))
 .build())
 .withMembershipProtocol(HeartbeatMembershipProtocol.builder()
 .withHeartbeatInterval(Duration.ofMillis(250))
 .build())
 .build();

atomix.start().join();

58	

Heartbeat	Protocol	

59	

Heartbeat	Protocol	

●  Send	constant	heartbeats	to	all	peers	
●  If	a	heartbeat	is	not	received,	mark	peer	dead	

60	

Heartbeat	Protocol	

61	

Heartbeat	Protocol	

62	

Heartbeat	Protocol	

63	

Heartbeat	Protocol	

64	

Heartbeat	Protocol	

65	

Heartbeat	Protocol	

66	

Heartbeat	Protocol	

67	

Heartbeat	Protocol	

68	

Heartbeat	Protocol	

cluster.protocol {
 type: heartbeat
 heartbeatInterval: 250ms
 failureThreshold: 12
}

69	

Heartbeat	Protocol	

70	

Heartbeat	Protocol	

71	

Heartbeat	Protocol	

●  Does	not	scale	well	
●  Exponential	growth	in	network	traffic	
●  Does	not	handle	simple	network	partitions	
●  More	frequent	false	positives	
●  But	can	detect	failures	more	quickly	

72	

SWIM	Protocol	

73	

SWIM	Protocol	

●  Reduce	network	load	
●  Improve	scalability	
●  Reduce	false	positives	

74	

SWIM	Protocol	

75	

SWIM	Protocol	

76	

SWIM	Protocol	

77	

SWIM	Protocol	

78	

SWIM	Protocol	

79	

SWIM	Protocol	

80	

SWIM	Protocol	

81	

SWIM	Protocol	

82	

SWIM	Protocol	

83	

SWIM	Protocol	

84	

SWIM	Protocol	

85	

SWIM	Protocol	

86	

SWIM	Protocol	

87	

SWIM	Protocol	

88	

SWIM	Protocol	

89	

SWIM	Protocol	

cluster.protocol {
 type: swim
 probeInterval: 500ms
 suspectProbes: 2
 gossipFanout: 2
 failureTimeout: 5s
}

90	

SWIM	Protocol	

●  Scales	well	
●  Linear	growth	in	network	traffic	
●  Handles	basic	network	partitions	
●  Avoids	false	positives	
●  But	may	take	longer	to	detect	failures	

91	

Replication	Protocols	

92	

Replication	Protocols	

●  Raft	
●  Primary-backup	
●  Distributed	log	

93	

Raft	Protocol	
	

●  Follower	
○  Receives	replicated	entries	from	leader	
○  Uses	a	timer	to	determine	when	leader	is	unavailable	

●  Candidate	
○  Start	an	election	
○  Request	and	count	votes	from	peers	

●  Leader	
○  Receive	client	requests	
○  Append	entries	to	leader	and	follower	logs	

94	

Raft	Protocol	
	

95	

Raft	Protocol	
	

96	

Raft	Protocol	
	

97	

Raft	Protocol	
	

98	

Raft	Protocol	
	

99	

Raft	Protocol	
	

100	

Raft	Protocol	
	

101	

Raft	Protocol	
	

102	

Raft	Protocol	
	

103	

Raft	Protocol	
	

104	

Raft	Protocol	
	

105	

Raft	Protocol	
	

106	

Raft	Protocol	
	

107	

Raft	Protocol	
	

108	

Raft	Protocol	
	

109	

Raft	Protocol	
	

110	

Raft	Protocol	
	

111	

Raft	Protocol	
	

112	

Raft	Protocol	
	

113	

Raft	Protocol	
	

114	

Raft	Protocol	

115	

Primary	Backup	Protocol	

●  Strong	leader	
●  Elect	a	primary	
●  Replicate	state	changes	from	primary	to	n	backups	
●  Changes	committed	once	replicated	to	r	backups	
●  Leader	election	done	through	Raft	

116	

Primary	Backup	Protocol	

117	

Distributed	Log	Protocol	

●  Strong	leader	
●  Elect	a	primary	
●  Replicate	log	entries	from	primary	to	n	backups	
●  Entries	committed	once	replicated	to	r	backups	
●  Leader	election	done	through	Raft	

118	

Distributed	Log	Protocol	

119	

Partition	Groups	

120	

Partition	Groups	

●  Leader-based	protocols	do	not	scale	well	
●  Must	shard	protocols	to	scale	
●  Run	multiple	instances	of	each	protocol	in	a	group	

121	

Partition	Groups	

122	

Partition	Groups	

123	

Partition	Groups	

124	

Partition	Groups	

●  Partition	groups	are	an	abstraction	for	configuring	sharded	
instances	of	a	protocol	
○  RaftPartitionGroup	
○  PrimaryBackupPartitionGroup	
○  LogPartitionGroup	

●  Partition	groups	may	reside	on	any	node	according	to	its	
configuration	

125	

Partition	Groups	

partitionGroups.raft {
 type: raft
 partitions: 3
 storage.level: mapped
 members: [atomix-1, atomix-2, atomix-3]
}

126	

Partition	Groups	

127	

Partition	Groups	

128	

Partition	Groups	

129	

Partition	Groups	

●  Management	group	
○  A	single	required	group	
○  Primary	election	
○  Primitive	management	
○  Transaction	management	

●  Primitive	groups	
○  Any	number	of	optional	groups	
○  Store	distributed	primitives	

130	

Partition	Groups	

managementGroup {
 type: raft
 partitions: 1
 members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.raft {
 type: raft
 partitions: 3
 partitionSize: 3
 storage.level: mapped
 members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.data {
 type: primary-backup
 partitions: 32
}

131	

Partition	Groups	
Atomix atomix = Atomix.builder()
 .withMemberId("member-1")
 .withManagementGroup(RaftPartitionGroup.builder("system")
 .withNumPartitions(1)
 .withMembers("member-1", "member-2", "member-3")
 .build())
 .withPartitionGroups(
 RaftPartitionGroup.builder("raft")
 .withNumPartitions(3)
 .withPartitionSize(3)
 .withStorageLevel(StorageLevel.MAPPED)
 .withMembers("member-1", "member-2", "member-3")
 .build(),
 PrimaryBackupPartitionGroup.builder("data")
 .withNumPartitions(32)
 .withMemberGroupStrategy(MemberGroupStrategy.RACK_AWARE)
 .build())
 .build();

atomix.start().join();

132	

Distributed	Primitives	

133	

Distributed	Primitives	

●  Interface	to	pre-defined	replicated	state	machines	
●  Backed	by	a	configurable	protocol	
●  Stored	on	a	chosen	partition	group	

134	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.SEQUENTIAL)
 .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

135	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.SEQUENTIAL)
 .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

Primitive type

Protocol

Configuration

Primitive name

136	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.SEQUENTIAL)
 .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

Multi-Raft Protocol

137	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(MultiPrimaryProtocol.builder()
 .withBackups(2)
 .withReplication(Replication.ASYNCHRONOUS)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

Multi-Primary Protocol

138	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(DistributedLogProtocol.builder()
 .withReplication(Replication.ASYNCHRONOUS)
 .withRecovery(Recovery.RECOVER)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

Distributed Log Protocol

139	

Distributed	Primitives	

140	

Distributed	Primitives	

141	

Distributed	Primitives	

142	

Distributed	Primitives	

143	

Distributed	Primitives	

DistributedSet<String> set = atomix.<String>setBuilder("my-set")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.SEQUENTIAL)
 .withCommunicationStrategy(CommunicationStrategy.LEADER)
 .build())
 .build();

if (set.remove("foo")) {
 set.add("bar");
}

144	

Distributed	Primitives	

AtomicCounter counter = atomix.atomicCounterBuilder("my-counter")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.LINEARIZABLE)
 .withCommunicationStrategy(CommunicationStrategy.LEADER)
 .build())
 .build();

long value = counter.incrementAndGet();
counter.compareAndSet(value, value + 1);

145	

Distributed	Primitives	

// Create a distributed lock primitive.
DistributedLock lock = atomix.lockBuilder("my-lock")
 .withProtocol(MultiRaftProtocol.builder()
 .withMaxTimeout(Duration.ofSeconds(5))
 .withReadConsistency(ReadConsistency.LINEARIZABLE)
 .withCommunicationStrategy(CommunicationStrategy.LEADER)
 .build())
 .build();

// Acquire the lock then do some work and release it.
lock.lock();
try {
 doWork();
} finally {
 lock.unlock();
}

146	

Distributed	Primitives	
// Create a leadership election.
LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
 .withProtocol(MultiRaftProtocol.builder()
 .withMaxTimeout(Duration.ofSeconds(5))
 .withReadConsistency(ReadConsistency.LINEARIZABLE)
 .withCommunicationStrategy(CommunicationStrategy.LEADER)
 .build())
 .build();

// Get the local member identifier.
MemberId localMemberId = atomix.getMembershipService().getLocalMember().id();

// Run the local member ID for leadership.
Leadership<MemberId> leadership = election.run(localMemberId);

// Send a message to the current leader to do some work.
atomix.getCommunicationService().send("do-work", new Work(), leadership.leader().id())
 .whenCompleteAsync((response, error) -> {
 if (error == null) {
 LOGGER.info("Work complete!");
 }
 });

147	

Distributed	Primitives	

LeaderElection<MemberId> election = atomix.<MemberId>leaderElectionBuilder("my-election")
 .withProtocol(MultiRaftProtocol.builder()
 .withMaxTimeout(Duration.ofSeconds(5))
 .withReadConsistency(ReadConsistency.LINEARIZABLE)
 .withCommunicationStrategy(CommunicationStrategy.LEADER)
 .build())
 .build();

election.addListener(event -> {
 MemberId newLeaderId = event.newLeadership().leader().id();
 LOGGER.info("A leadership change event occurred. New leader: {}", newLeaderId);
});

148	

Distributed	Primitives	

DistributedLog<Entry> log = atomix.<Entry>logBuilder()
 .withProtocol(DistributedLogProtocol.builder()
 .withConsistency(Consistency.SEQUENTIAL)
 .withRecovery(Recovery.RECOVER)
 .build())
 .build();

log.produce(new Entry("Hello world!"));

log.consume(record -> {
 Entry entry = record.value();
 LOGGER.info("Entry {} was appended to the log", entry);
});

149	

Distributed	Primitives	

DistributedMap<String, String> map = atomix.<String, String>mapBuilder("my-map")
 .withProtocol(MultiRaftProtocol.builder()
 .withReadConsistency(ReadConsistency.SEQUENTIAL)
 .withCommunicationStrategy(CommunicationStrategy.FOLLOWERS)
 .build())
 .withCacheEnabled()
 .build();

map.put("onos", "awesome");

AsyncDistributedMap<String, String> asyncMap = map.async();

asyncMap.put("onos", "awesome").thenRun(() -> LOGGER.info("Write complete"));

150	

Deployment	

151	

Agent	

./bin/atomix-agent -c atomix.conf -m member-1 -a 192.168.20.1:5679

152	

Cluster	Architecture	

153	

Cluster	Architecture	

154	

Cluster	Architecture	

155	

Cluster	Architecture	

156	

Owl	Cluster	Architecture	

157	

Owl	Cluster	Architecture	

158	

Owl	Cluster	Architecture	

159	

Owl	Cluster	Architecture	

160	

Owl	Cluster	Architecture	

161	

Owl	Cluster	Architecture	

162	

Owl	Cluster	Architecture	

163	

Owl	Cluster	Architecture	

164	

Owl	Cluster	Architecture	

165	

Owl	Cluster	Architecture	

166	

Owl	Cluster	Architecture	

{
 "nodes": [
 {
 "id": "onos-1",
 "ip": "192.168.20.1",
 "port": 9876
 },
 {
 "id": "onos-2",
 "ip": "192.168.20.2",
 "port": 9876
 },
 {
 "id": "onos-3",
 "ip": "192.168.20.3",
 "port": 9876
 }
]
}

167	

Owl	Cluster	Architecture	
{
 "partitions": [
 {
 "id": 1,
 "members": [
 "onos-1",
 "onos-2",
 "onos-3"
]
 },
 {
 "id": 2,
 "members": [
 "onos-1",
 "onos-2",
 "onos-3"
]
 },
 {
 "id": 3,
 "members": [
 "onos-1",
 "onos-2",
 "onos-3"
]
 }
]
}

168	

Owl	Cluster	Architecture	
cluster {
 node {
 id: ${atomix.node.id}
 host: ${atomix.node.host}
 }

 discovery {
 type: bootstrap
 # ...
 }

 protocol {
 type: swim
 # ...
 }
}

managementGroup {
 type: raft
 partitions: 1
 members: [atomix-1, atomix-2, atomix-3]
}

partitionGroups.raft {
 type: raft
 partitions: 3
 storage.level: mapped
 members: [atomix-1, atomix-2, atomix-3]
}

169	

Owl	Cluster	Architecture	
{
 "name": "onos",
 "node": {
 "id": "onos-1",
 "host": "192.168.20.1",
 "port": "9876"
 },
 "storage": [
 {
 "id": "atomix-1",
 "ip": "192.168.10.1",
 "port": 5679
 },
 {
 "id": "atomix-2",
 "ip": "192.168.10.2",
 "port": 5679
 },
 {
 "id": "atomix-3",
 "ip": "192.168.10.3",
 "port": 5679
 }
]
}

170	

Service	Discovery	

171	

Service	Discovery	

172	

Service	Discovery	

173	

Service	Discovery	

174	

Service	Discovery	

175	

Service	Discovery	

176	

Service	Discovery	

177	

Scaling	

178	

Scaling	

179	

Scaling	

180	

Scaling	

181	

Scaling	

182	

Scaling	

183	

Scaling	

184	

Rolling	Upgrades	

185	

Rolling	Upgrades	

186	

Rolling	Upgrades	

187	

Rolling	Upgrades	

188	

Rolling	Upgrades	

189	

Rolling	Upgrades	

190	

Rolling	Upgrades	

191	

Compatibility	

●  ONOS	1.14	and	1.15	compatible	with	any	Atomix	3.0.x	release	
●  ONOS	2.0	compatible	with	any	Atomix	3.1	release	
●  Experimental	REST	API	only	accessible	via	Atomix	agent	
●  Primitive	protocols	not	currently	exposed	in	ONOS	API	

192	

Resources	

●  ONOS	Website:	https://onosproject.org	
●  ONOS	GitHub:	https://github.com/opennetworkinglab/onos	
●  Atomix	Website:	https://atomix.io	
●  Atomix	GitHub:	https://github.com/atomix/atomix	

