

Transform. Transcend.

ODTN and TIP Collaboration with Whitebox Transponder 'Cassini'

2018.12.5 Hiroki Okui NTT Communications

Transform your business, transcend expectations with our technologically advanced solutions.

Copyright © NTT Communications Corporation. All rights reserved.

Disaggregated Transport Network

ODTN (Open Disaggregated Transport Network)

Open Line Systems

 Traditional optical line systems are integrated systems with a single vendor's transponder, mux/demux, amp, ROADM

Next Step in Disaggregation: Open Line Systems

- Open Line Systems are disaggregated systems composed of multi-vendor transponders
- Possible to use preferred vendor's transponder every time of wavelenth expansion

Cassini & TAI

Whitebox packet transponder "Cassini"

- Broadcom Tomahawk+ ASIC(3.2T)
- 100Gbit/s QSFP28 x16
- 200Gbit/s CFP2-ACO x8

What is TAI?

- TAI is an interface between optical transponders and system software
- Allows system software to operate with any TAI-compliant transponders
- Allows transponders to operate in any system which supports TAI
- By decoupling the transponders from the rest of the system, it allows each to innovate independently
- Available here:
 - <u>https://github.com/Telecominfraproject/oopt-tai</u>
 - <u>https://github.com/Telecominfraproject/oopt-tai-implementations</u>

What is not TAI?

- TAI is not an API for operators like YANG models
- TAI is not trying to become a de jure standard or standardization body

Collaboration with ODTN

- Provision through OpenConfig common model
- IP Infusion provides OpenConfig NBI interface to us with OcNOS (Thanks!)

Development & Test

Device setup and TAPI representation

Mapping from TAPI to OpenConfig

<pre><connection xmlns="urn:onf:otcc:yang:tapi-connectivity"> <uuid>0000000-0000-3000-0001-11100000000</uuid> <logical-channels> <connection-end-point> <logical-channel-assignments> <connection-end-point-id> </connection-end-point-id></logical-channel-assignments></connection-end-point></logical-channels></connection></pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <!--</th--><th>tapi-sample-step2-intermediate.xml</th><th>sbi-openconfig-sample-infinera.xml</th></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	tapi-sample-step2-intermediate.xml	sbi-openconfig-sample-infinera.xml
<pre> 11000000000<!--/connection-end-point-id--> 11100000000 </pre>	<pre><connection xmlns="urn:onf:otcc:yang:tapi-connectivity"></connection></pre>	<logical-channels> <channel> <logical-channel-assignments> <assignment> <config? <index>10101</index> <cassignment-type>LOGICAL_CHANNEL <logical-channel>20101</logical-channel> <allocation>100.0</allocation> </cassignment-type></config? </assignment> </logical-channel-assignments> </channel></logical-channels>

Model-driven controller in ONOS: DCS

- Subsystem to support NETCONF/YANG ecosystem
- Launched in 2016 and has been developed to realize model-driven ctrl.

Configuration still critical

- Dynamic (re)configur
 - networks still need to b
 - if nothing else, configur

• Configuration even m

devices may expose on

Service Configuration

- Operators want to create &
 - do this with agility and minimal
 - \circ create automated ways to instan
- Services comprise both conf
 - o e.g. setting-up lambdas and setti
 - e.g. provision NFV service chains

Control and Configuration

• Operators need a resilient and scalable platform capable of *both* control and configuration

ODTN Implementation

Framework:

- ONOS YANG compiler, runtime
- Dynamic config subsystems

Features:

- NBI(RESTCONF) auto-generation
- SBI(NETCONF) auto-generation
- Java library which enable easy implementation of Service Application
- Distributed config store of NBI service configuration and device configuration

Test Result

Made all component work together successfully

- Mapping between OpenAPIs: TAPI => OpenConfig => TAI
- Got confidence that Cassini/OcNOS/TAI are promising devices/NOS/API as transport whitebox
- Still work in progress
 - Some features of TAI are not implemented as of now
 - Exposed configurations are limited as well
 - Will be able to have a full capability of TAI in a year
- Some critical issues are found in DCS
 - Should be addressed from its design
 - Good requirement for next DCS

Takeaways

- ODTN and TIP collaboration
- ODTN and Cassini is a good starting point to realize whitebox transponder/controller
- Come and join us!

Thank you

Copyright © NTT Communications Corporation. All rights reserved.

Backup Slides

Our Expectation for Disaggregated Transport Networks

Flexibility and agility

- Integration from "in hardware" to "in software"
- Innovations and upgrades from "per all-in-one nodes" to "per each component"

- Target Domain
 - metropolitan
 - DC/Cloud Interconnect

Network Resource Groups

SDN Controller

https://www.opennetworking.org/open-transport/

Towards Full Open Architecture

- Existing communities are focused on each specific target
 No "Integrated Solution" in open source community
 - \rightarrow Build a reference implementation by using those communities outputs

ODTN (Open Disaggregated Transport Network)

ODTN Members

5 operators

-

12 vendors

China

Current progress and next step

- Current progress
 - Implementation and testing for Transponder provisioning with OpenConfig: Done
 - Design OLS and optical media layer provisioning with latest TAPI and OpenConfig: On going
- Next step
 - Implement path and config computation feature with leveraging onos optical-intent
 - Design mesh solution towards Phase 2.0

Challenges

- The journey to Software Integration of multi-vendor dis-aggregated devices is long and difficult
 - Lots of features to be realized among multi-vendor devices
 - Discovery, path computation, power control, protection, monitoring, etc..
- Common Open API is needed
 - TAPI is the most possible candidate, but there are some missing parts from the software integration perspective
 - ODTN is collaborating with OTCC/TAPI and growing into each other
- Multi-device transaction and config state management features are needed
 - But there are no candidates in current Open SDN controllers
 - Now considering to implement these features in ONOS