
An Operator Led Consortium

ODTN
An Open Controller for the

Disaggregated Optical Network
Andrea Campanella

andrea@opennetworking.org

Outline

• Clear ask from Operators

• ONOS as a Platform

• Incremental steps
• Phase 1.0

• Phase 1.5

• Phase 2.0

• Trials
• Next Steps

• Takeaways

2

Open Source Data Center Interconnect (DCI) Solution

1. Open and Standard APIs to be vendor neutral and modular.

2. Rapid cycle of innovations can happen in terminal equipment (Transponders)

3. Clear separation of the behavior of the transponder and the line system (OLS)

4. Enable Services to be rapidly created, prototyped, tested

5. Support OLS that transport any kind of signal (Alien Wavelengths)

6. Modular and production ready platform

7. CI/CD pipeline for DevOps environment

Clear ask from operators

Disaggregating Transponders from OLS
Business Benefits

• Rapid adoption of innovations in terminal equipment

• Enable vendors to innovate: speed, reach, QoT, …
• Let operators reap benefits through simple bookending

• Rapid introduction of new services in production network

• Realize DevOps model through SDN-enabled optical network

• Build CI/CD pipeline between operator, vendors, and open source software
stack

4

WSS

TAPI

Open Line System (OLS)

OpenConfig OpenConfig

MUX WSSAMP MUX

xponder

TAPI

xponder

xponder

Edge Cloud

xponder

xponder

xponder

WAN

Transponders from
multiple vendors

Book-ended
transponders

Optical
telemetry

Protection/
restoration

Calendaring
Power

Management

Why ONOS ?

• Modular Architecture
• Support for multiple protocols

• Support for multiple device models

• ease of extensibility

• Resiliency in case of failures
• Multi instance

• Device Mastership handling

• Dynamic Configuration Subsystem (DCS)

• Performance

• Production ready and proven code
5

ODTN Southbound protocol needs

• NETCONF + YANG → Yang tools and Dynamic Configuration

Subsystem

• REST and RESTCONF

• gRPC → gNMI

Southbound Protocols

6

Support Current Networks but also look ahead to future

deployments

Drivers

• Device specific driver
• collection of behaviors
• on-demand activation
• encapsulate device specific logic

and code
• ports,controller,flowrule,power…
• models

<company>-drivers.xml e.g microsemi

<driver name="microsemi-netconf"
extends="netconf" manufacturer="Microsemi"

 hwVersion="EA1000">

 <behaviour api=InterfacePath

 impl=ImpementationPath />

</driver>

7

Integrate different devices with different Yang models with no change

to the ONOS core or Northbound API

Handle ONOS instance failure even with mastership un-aware
devices.

Mastership handling 1/2

8

Netconf Session

xponder xponder

Handle ONOS instance failure even with mastership un-aware
devices.

Mastership handling 2/2

9

Netconf Session

xponder xponder

No downtime of device control and management

Dynamic Configuration Subsystem(DCS)

• YANG Compiler
• processes YANG models to understand structure of data
• generates model APIs and code that carries and conveys data

• YANG Runtime
• transforms data between external and internal representations

• Protocol Adapters
• ingest & emit data using various protocols, NETCONF, gRPC

• Information Store
• persist and distribute data throughout the cluster of nodes
• retain NB-to-SB edicts and SB-to-NB operational state

Major DCS System Components

YANG Runtime

*.yang
YANG

Compiler

model.jar

RESTCONF / NETCONF SB

REST / gRPC / RESTCONF / NETCONF NB

Device

Dynamic Config Subsystem

Device
Device Device

model.jar *.yang

Distributed Config Store

Device
Device

Device DeviceDevice

/services/devices

JSON / XML

JSON / XML

Device Config
App

Incremental Approach

ODTN gets developed one step at a time through:

• definition of use-case

• choice of common API(s) to achieve given use-case

• implementation in ONOS

• test, debug and trials

12

Each phase builds on top of the previous one with new and

further enhancements

ODTN APP

Device behavior calls

Store

gNMINetconf

TAPI over RESTCONF

OpenConfig v.nn over NETCONF or TAPI over REST/Resconf

Transponder TransponderOLS

Driver X Driver Y Driver Z

Solves constrained path
Manage resources
Generate device control and configuration

Map imposed semantics to commands that
device understands

Protocol handling
Understand semantics of request

SB driver
layer

Control logic

NB API
mediation

layer

High Level Design

13

ODTN Phase 1.0

14

Use Case
- Point to point connection made of 2 transponders and an

optional Open Line system
- Directly connected transponders, or OLS configured

out-of-band
- Enable cross-connection between line-side and client side ports

of the transponder

APIs

- Northbound Transport API (TAPI) through RESTCONF
- Transponders configuration: OpenConfig models over

NETCONF

ODTN Phase 1.0 - Use Case and APIs

Why OpenConfig for TX
- Well know API

- Supported already by many vendors

- Proper abstraction model for transponder devices capabilities and information

- Defines capabilities at correct level for programmability but also abstraction

from physical details

- Capability and Flexibility to support vendor specific features

- Can represent both multi-layer w/ and w/o OTN

- Extensible and Open Source

Why TAPI for ONOS Northbound and OLS ?

- Well know API

- Extensible and Open Source

- Tested and deployed (See Interop Testing)

- Proper abstraction for high level optical domain programming

- Can represent both multi-layer end to end provisioning with optical

parameters

- Great community of vendors and Service Providers

Transponders on either side of one p2p connection must be of same vendor

OLS, if present, is configured out of band to carry alien wavelengths across

Transponders → Infinera XT3300, NOKIA 1830PSI-2T, NEC, Edge-core CASSINI

ODTN Phase 1.0 - Topology

18

WSS

Open Line System (OLS)

OpenConfig OpenConfig

MUX WSSAMP MUX

xponder

TAPI

xponder

xponder

Edge
Cloud

xponder

xponder

xponder

WAN

Transponders from
multiple vendors

Book-ended
transponders

Out of Band
configuration

of OLS

- Auto-generated RESTCONF ONOS northbound based on TAPI yang

models through DCS

- ODTN Application for end to end control with TAPI model integration

- Implementation of an Openconfig ONOS driver supporting standard

version of Openconfig

- Specific device drivers were developed when needed (Infinera

XT-3300) due to deviances from the model

ODTN Phase 1.0 - Implementation

ODTN Phase 1.0 - Transponder discovery

20

WSS

Open Line System (OLS)

MUX WSSAMP MUXxponder xponderEdge
Cloud

WAN

Out of Band configuration of OLS

1. Pre-Provision of OLS

2. OSS/BSS or Operator send Json with OLS endpoint to ONOS

3. ONOS Initial reach out and OpenConfig request topology request

4. Transponder returns device information and ports

5. ONOS exposes ports it as Service Interface Points (SIPs)

6. ONOS Stores Transponders device and ports in distributed store

IP: 192.168.56.1
Port: 5001
Driver: ols

netcfg.json

1

2

OpenConfig Request and reply

5
Transponder
Device
and Ports

3 & 4 3 & 4

ODTN Phase 1.0 - Transponder provisioning

21

WSS

Open Line System (OLS)

MUX WSSAMP MUXxponder xponder

1. OSS/BSS send TAPI connectivity Request to ONOS with two SIPs (SIP1, SIP4)

2. ONOS computes OpenConfig Payload to create cross-connect in each device

(e.g. SIP1-SIP2) and sends it to devices

3. Transponder creates cross connection

4. ONOS Stores configuration of Transponders and can return it via TAPI NB

tapi-connectivity

1
OpenConfig <local-channel-assignment> tag

4
Transponder
Device
and Ports

2 2

SIP1 SIP4
SIP2 SIP3

3 cross connection between SIP1 and SIP2

<logical-channels>
 <channel>
 <logical-channel-assignments>
 <assignment>
 <index>10101</index>
 <config>
 <index>10101</index>
 <assignment-type>LOGICAL_CHANNEL</assignment-type>
 <logical-channel>20101</logical-channel>
 <allocation>100.0</allocation>
 </config>
 </assignment>
 </logical-channel-assignments>
 </channel>

Transponder1

DSR

x12

x12

x12

Link (100G)

1..1

11
11

121

111

lower connection

<connection xmlns="urn:onf:otcc:yang:tapi-connectivity">
 <uuid>00000000-0000-3000-0001-111000000000</uuid>
 <connection-end-point>
 <topology-id>...-100000000000</topology-id>
 <node-id>...-100000000000</node-id>
 <owned-node-edge-point-id>...-121000000000</owned-node-edge-point-id>
 <connection-end-point-id>...-121000000000</connection-end-point-id>
 </connection-end-point>
 <connection-end-point>
 <topology-id>...-100000000000</topology-id>
 <node-id>...-100000000000</node-id>
 <owned-node-edge-point-id>...-111000000000</owned-node-edge-point-id>
 <connection-end-point-id>...-111000000000</connection-end-point-id>
 </connection-end-point>
 <layer-protocol-name>DSR</layer-protocol-name>
</connection>

client side

line side

tapi-sample-step2-intermediate.xml sbi-openconfig-sample-infinera.xml

xe1

xe2

xe1/1

xe2/1

100G

100G

200G

oe1
oe1/1

oe1/2

10101

20101

2010210201

Mapping from TAPI to OpenConfig

xponder

WSS

TAPIOpenConfig OpenConfig

MUX WSSAMP MUX

xponder

xponderEdge Cloud

xponder

xponder WAN

CASSINI white-box TX Integration

OcNOS

TAI

libtai.so
(for vendor A)

Transponder A

TAI

libtai.so
(for vendor B)

Transponder B

OpenConfig

ODTN

Cassini Cassini23

Open Line System (OLS)
xponder

Transponder
Abstraction Interface

Broadcom
Tomahawk+

ODTN Phase 1.5

24

Use Case
- Point to point connection made of 2 transponders and an Open

Line system
- Enable end to end path provisioning with Transponder and OLS

control

APIs

- Northbound: Transport API (TAPI) through RESTCONF
- Transponders configuration: OpenConfig models over

NETCONF
- OLS configuration: T-API 2.1 models over REST

ODTN Phase 1.5 - Use Case and APIs

ODTN Phase 1.5 - Topology

26

WSS

TAPI

Open Line System (OLS)

OpenConfig OpenConfig

MUX WSSAMP MUX

xponder

TAPI

xponder

xponder

Edge
Cloud

xponder

xponder

xponder

WAN

Transponders from
multiple vendors

Book-ended
transponders

OLS Controller

Same as Phase 1.0 but OLS discovered and controlled by ONOS

Open Line System is exposed as a single device (big-switch)

OLS Vendors → ADVA, Coriant/Infinera, Nokia, Juniper

Done:

- Augmented transponder drivers with Line Side port configuration for

wavelength trough OpenConfig

- Extend Northbound TAPI to 2.1

- Driver for discovery of OLS device and Ports as SIPs (Service Interface

Points) through TAPI 2.1 on Southbound (Working with ADVA OLS)

In Progress:

- connectivity request for OLS through TAPI in SB

- Power negotiation and configuration

- Other OLS integration

ODTN Phase 1.5 - Implementation

ODTN Phase 1.5 - OLS Discovery

28

WSS

TAPI

Open Line System (OLS)

MUX WSSAMP MUX

OLS Controller

1. OSS/BSS or Operator send Json with OLS endpoint to ONOS

2. ONOS Initial reach out and TAPI topology request

3. OLS returns basic device information and Service Interface Points (SIPs)

4. ONOS Stores device and SIPs as Ports in distributed store

SIP1

SIP2

SIP3

SIP4

SIP5

SIP6

IP: 192.168.56.1
Port: 5001
Driver: ols

netcfg.json

1

2GET
Tapi-Topology

3 REPLY Tapi-Topology

4OLS Device
SIP 1-6 PORTS

ODTN Phase 1.5 - OLS Provisioning

29

WSS

TAPI

MUX WSSAMP MUX

OLS Controller

1. ONOS creates an Optical Connectivity Intent and Identifies two SIPs (1,4) as
ports required to pass through the OLS

2. (Optional) wavelength request on given ports to OLS
3. TAPI Connectivity request between SIP 1 and 4 on wavelength (if needed)
4. OLS sets up internal path and returns OK
5. Intent is installed and ONOS know of the OLS properly provisioned

SIP1

SIP2

SIP3

SIP4

SIP5

SIP6

OpticalConnectivityIntent
1

2GET Wavelength 3 POST TAPI
Connectivity Request

4OLS sets up path
between SIP1 and SIP4

5State is OK

ODTN Phase 1.5 - end to end provisioning

30

WSSMUX WSSAMP MUXxponder xponder

OLS Controller

1. OSS/BSS requests optical layer provisioning through TAPI

2. ONOS creates OpticalConnectivityIntent

3. OLS is provisioned through TAPI

4. Line side of the transponder is provisioned through OpenConfig

5. OSS/BSS request end to end L3 connectivity

6. Cross-connect line side to client side is setup through OpenConfig

7. End to end path is provisioned

Operator OSS/BSS

1
2

34 4

5

6 6
7

Lab Trial Plans

31

TBD: ADVA, INFINERA, OTHERS ?

Transponders

Open Line System

ODTN Phase 2.0

32

Use Case
- Mesh ROADM network made of N ROADMS and N

transponders (N>=2)
- Enable end to end path provisioning with Transponder and

ROADM control

APIs

- Northbound: Transport API (TAPI) through RESTCONF
- Transponders configuration: OpenConfig models over

NETCONF
- ROADM configuration: openROADM (?), others (?)

ODTN Phase 2.0 - Use Case and APIs

ODTN Phase 2.0

34

OpenRoadm(?)OpenConfig OpenConfig

xponder

TAPI

xponder

xponder

Edge
Cloud

xponder

xponder

xponder

WAN

Transponders from
multiple vendors

Book-ended
transponders

ROADM ROADM

xponder

xponder

xponder

Edge
Cloud

Transponders from
multiple vendors

ROADM

OpenConfig

Phase 2.0 Lab Trial Plans

35

Transponders

Open Line System Lumentum

Coriant ?

- leveraging existing ROADM effort in ONOS

- drivers for different roadms

- openRoadm API

ODTN Phase 1.5 - Implementation

Next Steps

37

Next Steps

- Complete OLS Integration

- Lab Trial phase 1.5 solution

- Expand Dynamic Config features (Dry-run, startup config, backup)

- Multi vendor Transponder and OLS Trial

- Code and platform hardening.

- Define scope and API for phase 2.0

Phase 1.0
(P2P, only transponder)

Phase 1.0 w/ OLS
(P2P, transponder + OLS)

Jul. 2018 Mar. 2019Jan. 2018

Takeaways

39

- ODTN is the first (and only) project to build open source software

stack for control and management of optical networks

- ODTN Uses standard and open device APIS (OpenConfig for

Transponders, TAPI for OLS)

- ODTN uses TAPI as a standard and open API on the northbound

- ODTN leverages architecture, performance e scalability of ONOS

- ODTN integrates a wide variety of vendors for network equipment.

- Incremental approach towards production readiness

- Lab trials with major operators → feedback loop of requirements

and enhancements

Takeaways

Great Community, Thanks you!

Still lots to do, come and join us!
odtn@opennetworking.org

Takeaways

mailto:odtn@opennetworking.org

Useful Info
ODTN Wiki: https://wiki.onosproject.org/display/ODTN/ODTN

Technical Weekly Meeting: Every Tuesday at 8 AM PST

Questions ?
andrea@opennetworking.org

42

https://wiki.onosproject.org/display/ODTN/ODTN
mailto:andrea@opennetworking.org

Phase 1.0

Phase 1.0 Blogpost

https://www.opennetworking.org/news-and-events/blog/odtn_ph
ase1_results/

Phase 1.0 Demo with NTT and Infinera

https://wiki.onosproject.org/pages/viewpage.action?pageId=2333
5851

Phase 1.0 Demo with Telefonica and NOKIA

https://wiki.onosproject.org/pages/viewpage.action?pageId=2759
0874

43

https://www.opennetworking.org/news-and-events/blog/odtn_phase1_results/
https://www.opennetworking.org/news-and-events/blog/odtn_phase1_results/
https://wiki.onosproject.org/pages/viewpage.action?pageId=23335851
https://wiki.onosproject.org/pages/viewpage.action?pageId=23335851
https://wiki.onosproject.org/pages/viewpage.action?pageId=27590874
https://wiki.onosproject.org/pages/viewpage.action?pageId=27590874

https://www.opennetworking.org

44

https://www.opennetworking.org

Where ODTN Fits into Open Source Ecosystem

OCP

End-to-End Orchestration
ONAP / OSM

En
d

-t
o

-E
n

d

O
rc

h
es

tr
at

io
n

CORD

TIP

Ed
ge

 S
er

vi
ce

s
&

O
p

en
 D

at
ap

la
n

e

H
ar

d
w

ar
e

P
er

ip
h

er
al

s

This ecosystem is poised to
deliver robust solutions over

time, from white box
peripherals to orchestrated

end-to-end solutions
Datacenter
Peripherals

Specialized Telecom
Peripherals (e.g Voyager)

ODTN

O
N

F

ONOS

ODTN is the only
optical transport

open source project

First project to build open
source software stack

for control and
management of optical

networks

Relationship to Other Standards & Optical Organizations

• ONF Transport API

• Wide industry support and growing acceptance

• ODTN using TAPI for service provisioning, topology, …

• OpenConfig

• Develops common data models for network management

• ODTN using OpenConfig models for transponders, MUX, WSS, AMP

• Telecom Infra Project (TIP)

• Open Optical Packet Transport group

• ODTN to consume TIP’s network planning tools and open APIs

• ODTN software stack can be used with TIP hardware building blocks (e.g. CASSINI)

• OpenROADM MSA

• Develops open models for optical devices, networks and services

• Focus on transponder compatibility (eliminating need for bookending)

• Models may be incorporated if ODTN community puts focus on data plane interoperability
46

ODTN is the only
optical transport

open source project

First project to build open
source software stack

for control and
management of optical

networks

Phase 3: Full Disaggregated ROADM with Open APIs

Goal

• Integrate ONOS and disaggregated optical components by using open APIs

• Verify the reference implementation that works certainly for disaggregated ROADM use case

• Identify problems to be solved toward production

Device Components

• Transponder, WSS, AMP, AOS, etc. (details TBD)

Term

• Q4 2019 (?)

47

TR
N

TR
N

TR
N

TR
N

Client ports
(add)

To/from packet layer

WSS AMP

AOS

Client ports
(drop)

Line ports
Single

wavelength

To/from network control

EMS

To/from remote ROADM

API

API

APIAPI

API

