e OM—

QM ECT

ONOS Update

Retrospective, Today, Future Direction

Thomas Vachuska - ONF

M=



Overview

Retrospective of where ONOS has been
Update on where ONOS is now

Preview of where ONOS is going



Retrospective

In the last 12 months, ONOS had the following releases:
1.12 (Magpie), 1.13 (Nightingale), 1.14 (Owl), 1.15 (Peacock)

The primary focus of these releases:
support for deployments and operations
diagnostics, remote admin, new REST APIs, cluster helm charts, etc.
scalability optimizations
separate Atomix/ONOS cluster, distributed stores, etc.

reducing technical debt
bugs, incubator cleanup, build framework upgrade, etc.

The above is just for the core platform... in the meantime...

O M~



Retrospective

ONOS community continued to add apps, device drivers, etc.
174 apps available

New SB APIs for NG SDN & Stratum
gNMI, gNOI, P4ARuntime

GUI rewrite using Angular 7 and TypeScript

amazing job by Sean Condon

ONOS/Trellis entered production deployments in Comcast
currentlyon 1.12.1, upgrading to 1.12.2
evaluating 1.14.0 for larger scale deployments

O M



Current Release (Peacock)

Java 8 LTS is about to reach obsolescence
Java 11 is the next LTS

Apache Karaf 4.2.1 is the latest release of Karaf
also the first release that does not require Java 8

Goal set upgrade Apache Karaf and Java versions
needed to ensure that ONOS remains a stable & viable platform

But... update to Karaf 4.2.1 and associated OSGi framework
involved changes that are not backwards compatible... so...



Peacock Release - Two ONQOS Versions

TST deliberately chose to move ONOS major version to 2.0

Peacock work performed in two parallel streams:

code-base retrofit to Karaf 4.2.1 done on separate branch
normal development done on master

The upgrade work took ~8 weeks

Resulted in two ONOS versions



ONOS 1.15 (Peacock)

ONOS 1.15 is the last release on Apache Karaf 3.0.8 and Java 8

Captures all work done during the 8 weeks the code base was
being upgraded on a separate dev branch

Carries the original Peacock label

Released last week
November 27th, 2018



ONOS 2.0 (Quail?)

ONOS 2.0 is the first release on Apache Karaf 4.2.1 and Java 11

Provides the necessary platform upgrade for long-term viability

backward incompatibilities are relatively minor
entire ONOS repo was retrofitted; other code should be easy to retrofit

core incubator eliminated
code either promoted to core, moved to apps or removed
code-base disagreggation postponed

Yet-to-be named
Quail?, Quetzal?, ... naming poll will be announced soon

Expected to release mid-December
OMF



Where we are now

ONOS provides a stable platform with nice characteristics:

easy app development

SDK, distributed stores/primitives, app archetypes, etc.
easy deployment as a distributed cluster

Docker containers, Kubernetes, etc.
automatic service injection

super-fast
service calls are just method calls

lots of existing apps and extensions
protocol extensions, device drivers, utilities, etc.
support for both legacy protocols and next-gen SDN interfaces



Where we are now

ONOS architecture also has some caveats and limitations:
limited isolation mechanism
core & apps share same resources

unable to have tenant-specific apps
onIy tenant-aware ones

apps limited to Java or JVM-based languages
e.g. Scala, Jython, Groovy

horizontal app/service scaling is difficult
enforced cluster symmetry

difficult to migrate components off-platform
e.g. control-plane modules embedded on switch



Looking Ahead

With ONOS 2.0 being a stable platform for some time to come,
now is the time to consider next generation architecture

With UPAN reference design starting to materialize with Stratum
being its DP, now is the time to consider its CP

Goal is to establish the next generation SDN controller architecture

completely in the open and with the help of the ONOS community
kick of at start of 2019

Continue to curate ONOS 1.x & 2.x maintenance and releases
core team to focus solely on bug fixes, code reviews and release engineering
ONOS community to continue new feature development

O M~



NG ONOS Architectural Tenets

Use gRPC-centric interfaces
gNMI, gNOI, P4Runtime, OpenConfig, etc.

Follow micro-services principles
horizontal scaling of services, support for tenant apps, etc.

Rely on existing orchestration platforms
e.g. Kubernetes, Helm charts

Reuse code as appropriate
e.g. Atomix, GUI, protocol libraries

Focus on features required for production deployments
live update, diagnostics, monitoring, integrations with orchestrators, etc.

Allow components written in different languages
Java, Go, Python, etc.



Engage!

(Make it so!)



