[

N
oM~

Open Networking Foundation

Using Bazel to improve build stability
and enable codebase disaggregation

Ray Milkey
Member of Technical Staff @ ONF




Why move away from Buck?

Builds sometimes unreproducible

Limited extension model

ONOS used a custom fork, high maintenance cost
Custom java code required

No support for remote repositories

Limited community, not much development



Why Bazel?

Hermetic builds

Built in support for external repositories

Active community, well documented

Flexible rule model allows customization without code changes
Multi Language support (Java, Go, C, C++ currently used in
ONOS)

Internal ONF synergy with Stratum and UPAN tool chain

O M~



Hermetic builds

Builds should be reproducible across platforms

Host environment should not pollute artifacts
“Sandboxing” prevents access to files not declared as
dependencies

Hermetic artifacts can be cached and shared

Much less churn when rebuilding



References to external repositories

Needed to support source code disaggregation

Each workspace carries its own configuration and build rules
Can inject Bazel build into a non-bazel repository

Supports GitHub repositories out of the box

Currently used for protobufs builds, npm builds for web Ul



Flexible Rules

No need to write Bazel java code - custom rules are
implemented in Starlark (formerly Skylark), a python subset
Starlark code has access to everything in a rule, including
inputs, outputs, and dependencies

All inputs and outputs must be declared to assure hermeticity
Examples in ONOS - OSGi jar file, Swagger, Yang model, ONOS
application

O M~



Still to do

Bazel solution for ONOS application archetypes

Implement Sonar code coverage

Implement a web based cache to allow sharing artifacts across
builds

Investigate remote build capability



Want to Explore or Contribute?

o ONOS Website: https://onosproject.org
o ONOS GitHub: https://github.com/opennetworkinglab/onos




