
A gRPC Based Event Distribution System

Adib Rastegarnia, Douglas Comer
Systems Research Group

Purdue University

Motivation and Problem Statement

The architecture of current software defined management systems
exhibits several weaknesses as follows:
• Monolithic and Proprietary

• Lack of a Uniform Set of NB APIs

• Lack of Reusability of Software Modules

• Lack of Scalability and Reliability

3

SDN Control Plane Disaggregation

 To migrate from a monolithic architecture to a
microservice architecture for SDN controllers, we need
to disaggregate control plane services into a set of
cooperative microservices that can communicate with
each other via standard APIs.

• Flexibility to scale:
• Disaggregation makes it possible to scale a given core service

horizontally, independent of other subsystems and services

• Freedom to choose a programming language
• Unlike current designs, disaggregation allows a programmer to

choose an arbitrary programming language, programming

technology, and third-party libraries when building an SDN

management application

4

Advantages of a Disaggregated Control Plane

• Fault isolation:
• Disaggregation means the failure of a given microservice will not

affect the execution of other microservices

• Minimal Built-in Components
• Disaggregation minimizes the set of components built into a

controller

• A Disaggregated Codebase
• Disaggregation allows the code for services to be independent

5

Advantages of Disaggregated Control Plane

6

A Disaggregated SDN Control Plane Architecture

• An Event Distribution Mechanism that uses a Publish-Subscribe

Model
• Apache Kafka can be used to implement an event distribution

mechanism that follows the publish-subscribe model

• An Event Distribution Mechanism that uses a Point-to-Point

Model
• gRPC can be used to implement an event distribution system that

follows the point-to-point model

7

Two Candidate Event Distribution Systems

8

A Kafka-Based Event Distribution System

9

A gRPC Based Event Distribution System

10

Umbrella: A Unified SDN Programming Framework

• We implemented each of the candidate event distribution
systems as an application for ONOS

• To measure the two event distribution mechanisms, we used
an SDN testbed

• Physically, the testbed consists of five OpenFlow switches
• Logically, the testbed defines ten interconnected sites

11

Experimental Setup

• Scenario 1: To understand the the cost of using an event
distribution system, compare the amount of time that an
external app or service takes to process a packet event with the
time it takes to process the same packet event inside the
current monolithic version of ONOS

• Basic measure: overall response time

12

Experimental Scenarios

● We repeated an experiment 500 times to measure the ping

response time between two end hosts in our SDN testbed that

are 5 hops apart

● As a baseline, we measured the average response time for

processing pings in the current, monolithic version of ONOS,

and arrived at an average of 24 ms

● The average response time for a gRPC system is 29 ms

● The average time for a Kafka system is 35 ms

13

Experimental Results for Scenario 1

• Scenario 2: To assess the impact of externalized packet
processing and the use of a REST API for flow rule installation
on throughput, we compared two external reactive forwarding
applications that use gRPC and Kafka with the same reactive
forwarding application compiled into the current monolithic
version of ONOS

14

Experimental Scenarios

15

Experimental Results for Scenario 2

Thank You

Follow Up Links:
systems.cs.purdue.edu

