p4pktgen: Automated Test Case Generation for P4 Programs

ABSTRACT

With the rise of programmable network switches, network in-
frastructure is becoming more flexible and more capable than
ever before. Programming languages such as P4 lower the
barrier for changing the inner workings of network switches
and offer a uniform experience across different devices. How-
ever, this programmability also brings the risk of introducing
hard-to-catch bugs at a level that was previously covered
by well-tested devices with a fixed set of capabilities. Subtle
discrepancies between different implementations pose a risk
of introducing bugs at a layer that is opaque to the user.

To reap the benefit of programmable hardware and keep—
or improve upon—the reliability of traditional approaches,
new tools are needed. We present p4pktgen, a tool for auto-
matically generating test cases for P4 programs using sym-
bolic execution. These test cases can be used to validate that
P4 programs act as intended on a device.

1 PRESENTER/PROJECT

Presenter: Andres Notzli, Stanford University
Joint work with:

e Jehandad Khan, Virginia Tech

e Andy Fingerhut, Cisco Systems

o Clark Barrett, Stanford University

o Peter Athanas, Virginia Tech

URL: https://github.com/p4pktgen/p4pktgen
2 ADDITIONAL INFORMATION

In our demo/poster, we present p4pktgen, an open source
tool for automatically generating test cases for P4 programs.
Test cases generated by p4pktgen can be employed in a wide
range of scenarios. One of the primary uses that we envision
is to validate that P4 programs act as intended on their target
devices, by running the same test packets through a software
reference implementation and the target hardware and com-
paring the output of the two implementations. Alternatively,
P4 can be used to express a specification of existing, non-
programmable hardware, which can then be tested against a
software reference implementation.

Atahigh level, p4pktgen takes a P4 program and produces
test cases in the form of packets and table configurations.
The user can choose between generating test cases for all
paths or generating test cases that prioritize branch coverage.
Figure 1 provides an overview of p4pktgen’s design.

p4pktgen generates its test cases using symbolic execu-
tion along concrete paths. Symbolic execution is an analysis
technique for programs that translates a given program into

P4 Program

!
p4c BMv2

]

JSON E -
o .2
Parser Tg s
S a5
Control Flow Graphs |< 2 <
S| |3
Path Generator o % o
Path 2l = o0
9 Path £ < +
= a S| |E X~
‘E Ol | o
[}
A Translator = Ei
& 5
w
5 Constraints A

SMT Solver

Test Case Generator ‘

i

Test Case

Model

Figure 1: Overview of p4pktgen.

logical formulas to examine its behavior across all possi-
ble inputs. After parsing, p4pktgen generates (partial) paths
through the control flow graph of the given P4 program.
Given a path through the program, p4pktgen tries to gen-
erate a packet that exercises that path. To do this, it must
craft a packet that triggers the correct parser transitions, the
correct conditional branches, and the correct table actions.
These requirements can be expressed as a set of constraints
over the inputs, creating a formula that expresses the con-
ditions for taking the target path through the program. We
use a solver for satisfiability modulo theories (SMT) to find
a concrete assignment for the variables to satisfy the con-
straints. If the solver returns an assignment, p4pktgen uses
it to craft a test packet for the path and the table entries. If the
solver determines that no such assignment exists, p4pktgen
uses that information to not further explore paths with the
same infeasible prefix. Optionally, p4pktgen validates the
test cases with BMv2, a software reference implementation of
a P4 switch, by sending the test packet to the switch, parsing
its output, and comparing it against the expected output.

In our experience, p4pktgen is capable of quickly achiev-
ing good coverage of paths or branches in a program. In un-
der 22 minutes, it covers 95% of the branches in switch.p4,!
one of the largest open-source P4 programs. We also found
that p4pktgen can cover all paths in programs with thou-
sands of paths in a matter of minutes. Finally, p4pktgen
helped us discover five bugs in the open source P4 tools.

n our tests, we modified switch.p4 slightly to remove features not cur-
rently supported by p4pktgen, such as P4 hashes and action profiles.

https://github.com/p4pktgen/p4pktgen

	Abstract
	1 Presenter/Project
	2 Additional Information

