
Stefan
Heule

heule@google.com

Konstantin
Weitz

konne@google.com

Waqar
Mohsin

wmohsin@google.com

Leveraging P4 for
Fixed Function Switches

P4 on Programmable Switches
P

ro
gr

am
m

ab
le

P

ar
se

r

Memory
ALU

Memory
ALU

Memory
ALU

P
ro

gr
am

m
ab

le

D
ep

ar
se

r

Memory
ALU

P4
Program

P4 program
determines
what the
Hardware does

presenter: konne

P4 on Fixed-Function Switches

P4
Program

Fi
xe

d
P

ar
se

r

L3 Admit

L3 Routing

Access
Control

Lists

Fi
xe

d
D

ep
ar

se
r

Virtual
Routing

and
Forwarding

L2 Routing

Hardware
determines
what the P4
program does

presenter: konne

P4 on Fixed-Function Switches

P4
Program

Fi
xe

d
P

ar
se

r

L3 Admit

L3 Routing

Access
Control

Lists

Fi
xe

d
D

ep
ar

se
r

Virtual
Routing

and
Forwarding

L2 Routing

Hardware
determines
what the P4
program does

But, only model what we need:
- skip unused features (e.g. L2)
- tables only include actually

used keys and actions
- table sizes are what we use
- for configurable aspects, only

model our configuration
- ...

presenter: konne

Why would you want to do this?

Clear contract of switch behavior:
● Enables operation of a heterogeneous fleet
● Automatically generate switch config
● Enables automated switch validation

presenter: konne

Why would you want to do this?

Clear contract of switch behavior:
● Enables operation of a heterogeneous fleet
● Automatically generate switch config
● Enables automated switch validation

presenter: konne

Automated Switch Validation

Automated Switch Validation

Test inputs are automatically generated,
either from production data,

or by analyzing our P4 programs.

presenter: konne

Automated Switch Validation

We validate a single
switch chip, not the

whole network.

presenter: konne

Automated Switch Validation

Test outputs are
compared to a P4

program simulation.

presenter: konne

How do we test the switch?

P4 Switch

ATPG: Automated Test
Packet Generation

Dataplane

Replay production
flows/groups

Fuzzer to randomly create
flow/group insert/delete
requests

P4
RTControlplane

presenter: konne

Controlplane Fuzz Testing

Controlplane Fuzzing

Randomly generate flow requests
according to P4 program grammar

- Mostly generate well-formed requests
- Sometimes generate ill-formed ones
- Intuition: Need to be well-formed enough to not get

rejected early

Send flow to switch, check that they are
handled correctly

- E.g. well-formed insert must succeed (unless
resource exhausted or already present)

- P4 allows us to accurately predict the expected error
(or success)

P4 Switch

P4Runtime

Switch-Under-Test

Random
Flows

presenter: heule

Controlplane Fuzzing: Resource exhaustion

Time

Fl
ow

s

Resource
Exhaustion
Forbidden

Resource
Exhaustion
Allowed

Specified
Resource

Limit

P4 Switch

P4Runtime

Switch-Under-Test

Random
Flows

presenter: heule

Automated Test Packet Generation

Automated Test
Packet Generation Flows

Switch

Expected
Output
Packets

Actual
Output
Packets

Verify
Match

Packet
Generator

Input
Packets

Legend:

Software

Controlplane

Dataplane

P4Runtime

P4 Simulator
(BMv2)

P4Runtime

presenter: heule

VRF DstIP

42 10.152.8/24

… ...

Generation Strategy: Hitting every flow on the switch
VRF Classifier IPv4 LPM

EthType SrcMac Port Set VRF

0x800 aa:bb:cc:
dd:ee:ff

* 1337

0x800 * 4 42

VRF == 42 & DstIP[32:16] == "10.152" // hit target IPv4 LPM flow

SAT solver
finds packets to

satisfy the formula

42 10.152/16

& !(VRF == 42 & DstIP[32:8] == "10.152.8") & !(...) // avoid all other IPv4 LPM flows

Want to hit
this flow

// encode VRF assignment
& ((!(EthType == 0x800 & SrcMac == "aa:bb:cc:dd:ee:ff")
 & (EthType == 0x800 & Port == 4)) → VRF == 42)

presenter: konne

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Dataplane Testing: why SAT works

- Everything is finite
(no lists, loops, recursion, etc)

- Switch semantics are rigorously defined in the P4
program

presenter: heule

Dataplane Testing: why it works

Test oracle: Clear semantics allow simulator to
precisely predict switch behavior

Test generation: Semantics are simple enough
that tools can reason about them
automatically

P4

OpenFlow

Lack of formal and computer-readable
specification makes both difficult to do
automatically

presenter: heule

presenter: konnepresenter: konne

- Bugs in the Switch

- Bugs in our SDN Controller

- Bugs in our P4 specs

- Bugs in BMv2

What kind of Bugs did we find?

Conclusion

P4 provides a clear contract of switch behavior:
- Enables operation of a heterogeneous fleet
- Can be used to generate switch config
- Enables automated switch validation

(it's fast and finds a broad spectrum of bugs)

Key Takeaways

We're hiring!
Email: {konne, heule, wmohsin}@google.com

mailto:konne@google.com

