Leveraging P4 for
Fixed Function Switches

Konstantin Stefan Waaqar
Weitz Heule Mohsin
konne@google.com heule@google.com wmohsin@google.com

R

3

P4 on Programmable Switches

P4 program P 4

determines

what the Program

Hardware does g
@ @

3 Memory Memory Memory Memory P

e QP € ®©
ss 7 AU [AU [T Aau [T Aau [T sg
o) 2N
S S
o o

P4 on Fixed-Function Switches

Hardware P 4

determines

program does
. . o
o Virtual L2 Routing 7
S Routin g 8
o 9 b L3 Admit Control = &
B || poond Lists 5
i orwarding L3 Routing I_>I__<

P4 on Fixed-Function Switches

Hardware
determines
what the P4
program does

P4

Program

v

i

But, only model what we need:

skip unused features (e.g. L2)
tables only include actually
used keys and actions

table sizes are what we use
for configurable aspects, only
model our configuration

Fixed Parser

Virtual
Routing
and
Forwarding

L3 Admit

L2 Routing

L3 Routing

Access
Control P
Lists

Fixed Deparser

Why would you want to do this?

Clear contract of switch behavior:

e Enables operation of a heterogeneous fleet
e Automatically generate switch config

e Enables automated switch validation

Why would you want to do this?

Clear contract of switch behavior:

e Enables operation of a heterogeneous fleet
e Automatically generate switch config

e Enables automated switch validation

Automated Switch Validation

Automated

Test inputs are automatically generated,
either from production data,
or by analyzing our P4 programs.

Switch

We validate a single
switch chip, not the
whole network.

Validation

Test outputs are
compared to a P4
program simulation.

How do we test the switch?

|_
Controlplane J<—>§ P4 Switch %ﬂ_‘ Dataplane J
Replay production ATPG: Automated Test
flows/groups Packet Generation

Fuzzer to randomly create
flow/group insert/delete
requests

Controlplane Fuzz Testing

Controlplane Fuzzing

Randomly generate flow requests

according to P4 program grammar Random J
- Mostly generate well-formed requests Flows
- Sometimes generate ill-formed ones l
- Intuition: Need to be well-formed enough to not get .
. P4Runtime
rejected early
P4 Switch

Send flow to switch, check that they are

handled correctly Switch-Under-Test
- E.g. well-formed insert must succeed (unless
resource exhausted or already present)
- P4 allows us to accurately predict the expected error
(or success)

Controlplane Fuzzing: Resource exhaustion

Specified
Res.ou.rce Y Resource
L'T't M ﬁ Exhaustion ea—
] Allowed Flows J

n

s P4Runtime

0 Resource

L > Exhaustion P4 Switch
Forbidden

Switch-Under-Test

Time

Automated Test Packet Generation

Automated Test

H Flows
Packet Generation l J
P4Runtime
. Expected
/ P4 Simulator St
Packet Input (BMVZ) Packets
——
Generator Packets
Verify
Match
P4Runtime
regend: Actual
Switch Output
Software Packets

Controlplane

Dataplane

Generation Strategy: Hitting every flow on the switch

VRF Classifier IPv4 LPM
EthType SrcMac Port Set VRF VRF DstIP
0x800 aa:bb:cc: * 1337 42 10.152.8/24
dd:ee:ff |
—>| 42 10.152/16 Yient fo hi
0x800 . 4 42
VRF == 42 & DstIP[32:16] == "10.152" / hit target IPv4 LPM flow
& I(VRF == 42 & DstIP[32:8] == "10.152.8") & I(...) /[avoid all other IPv4 LPM flows
/l encode VRF assignment
& (({(EthType == 0x800 & SrcMac == "aa:bb:cc:dd:ee:ff") SAT solver
& (EthType == Ox800 & Port == 4)) — VRF == 42) finds packets to

satisfy the formula

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Dataplane Testing: why SAT works

- Everything is finite
(no lists, loops, recursion, etc)

- Switch semantics are rigorously defined in the P4
program

Dataplane Testing: why it works

O

P4

O

OpenFlow

Test oracle: Clear semantics allow simulator to
precisely predict switch behavior

Test generation: Semantics are simple enough
that tools can reason about them
automatically

Lack of formal and computer-readable
specification makes both difficult to do
automatically

What kind of Bugs did we find?

- Bugs in the Switch

- Bugs in our SDN Controller
- Bugs in our P4 specs

- Bugs in BMv2

Conclusion

Key Takeaways

P4 provides a clear contract of switch behavior:
- Enables operation of a heterogeneous fleet
- Can be used to generate switch config
- Enables automated switch validation
(it's fast and finds a broad spectrum of bugs)

We're hiring!
Email: {konne, heule, wmohsin}@google.com

mailto:konne@google.com

