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P4 on Programmable Switches
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P4 on Fixed-Function Switches
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But, only model what we need:

skip unused features (e.g. L2)
tables only include actually
used keys and actions

table sizes are what we use
for configurable aspects, only
model our configuration
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Why would you want to do this?

Clear contract of switch behavior:

e Enables operation of a heterogeneous fleet
e Automatically generate switch config

e Enables automated switch validation
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Automated Switch Validation




Automated

Test inputs are automatically generated,
either from production data,
or by analyzing our P4 programs.



Switch

We validate a single
switch chip, not the
whole network.



Validation

Test outputs are
compared to a P4
program simulation.



How do we test the switch?

|_
Controlplane J<—>§ P4 Switch %ﬂ_‘ Dataplane J
Replay production ATPG: Automated Test
flows/groups Packet Generation

Fuzzer to randomly create
flow/group insert/delete
requests



Controlplane Fuzz Testing




Controlplane Fuzzing

Randomly generate flow requests

according to P4 program grammar Random J
- Mostly generate well-formed requests Flows
- Sometimes generate ill-formed ones l
- Intuition: Need to be well-formed enough to not get .
. P4Runtime
rejected early
P4 Switch

Send flow to switch, check that they are

handled correctly Switch-Under-Test
- E.g. well-formed insert must succeed (unless
resource exhausted or already present)
- P4 allows us to accurately predict the expected error
(or success)



Controlplane Fuzzing: Resource exhaustion
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Automated Test Packet Generation




Automated Test
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Generation Strategy: Hitting every flow on the switch

VRF Classifier IPv4 LPM
EthType SrcMac Port Set VRF VRF DstIP
0x800 aa:bb:cc: * 1337 42 10.152.8/24
dd:ee:ff |
—>| 42 10.152/16 Yient fo hi
0x800 . 4 42
VRF == 42 & DstIP[32:16] == "10.152" / hit target IPv4 LPM flow
& I(VRF == 42 & DstIP[32:8] == "10.152.8") & I(...) /[ avoid all other IPv4 LPM flows
/l encode VRF assignment
& (({(EthType == 0x800 & SrcMac == "aa:bb:cc:dd:ee:ff") SAT solver
& (EthType == Ox800 & Port == 4)) — VRF == 42) finds packets to

satisfy the formula


https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Dataplane Testing: why SAT works

- Everything is finite
(no lists, loops, recursion, etc)

- Switch semantics are rigorously defined in the P4
program



Dataplane Testing: why it works

O

P4

O

OpenFlow

Test oracle: Clear semantics allow simulator to
precisely predict switch behavior

Test generation: Semantics are simple enough
that tools can reason about them
automatically

Lack of formal and computer-readable
specification makes both difficult to do
automatically



What kind of Bugs did we find?

- Bugs in the Switch

- Bugs in our SDN Controller
- Bugs in our P4 specs

- Bugs in BMv2



Conclusion




Key Takeaways

P4 provides a clear contract of switch behavior:
- Enables operation of a heterogeneous fleet
- Can be used to generate switch config
- Enables automated switch validation
(it's fast and finds a broad spectrum of bugs)

We're hiring!
Email: {konne, heule, wmohsin}@google.com
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