
Stephen Ibanez, Gordon Brebner, Gianni Antichi, Nick McKeown

May 1st 2019

Event-Driven Packet Processing



P4 Programming Model

>> 2

Traffic
Manager

Packet
Generator

Synchronous packet-by-packet processing



Limitations of P4 Programming Model
˃ Performing periodic tasks

HULA [1] – periodic packet probes
Count-Min-Sketch – periodic state reset

˃ Updating state multiple times / using state in a different stage
Using congestion signals in ingress pipeline (AQM, NDP [2])

>> 3

Common Congestion Signals Other Congestion Signals
• Queue size
• Queue service rate
• Queueing delay

• Packet loss volume
• Rate of change of queue size
• Timestamp of buffer 

overflow/underflow events
• Per-active-flow buffer occupancy
• Etc…

˃ Solution: Generalize: Packet arrival/departure events è data-plane events

[1] Katta, Naga, et al. "Hula: Scalable load balancing using programmable data planes." SOSR, 2016.
[2] Handley, Mark, et al. "Re-architecting datacenter networks and stacks for low latency and high performance." SIGCOMM, 2017.



Data-Plane Events

>> 4

Event Type Description

Ingress Packet Packet arrival
Egress Packet Packet departure
Recirculated packet Packet sent back to ingress
Buffer Enqueue Packet enqueued in buffer
Buffer Dequeue Packet dequeued from buffer
Buffer Overflow Packet dropped at buffer
Buffer Underflow Buffer becomes empty
Timer Event Configurable timer expires
Control-plane triggered Control-plane triggers processing logic in 

data-plane
Link Status Change Link goes down / comes up
Packet Transmission Packet finished transmission
State Condition Met User defined condition

Packet & 
Metadata
Events

Metadata
Events



Event-Driven Programming Model

>> 5

Traffic
ManagerIngress PipelineIngress Packet

Enqueue Pipeline
Enqueue Event

Dequeue Pipeline
Dequeue Event

statestate

statestate

statestate

st
at

e

st
at

e

Does not sacrifice line-rate packet processing



Event-Driven Programming Model

>> 6

// arch.p4

extern shared_register<T> {

shared_register();

void read(out T result);

void write(in T value);

}

// my_prog.p4

shared_register<bit<32>>() bufSize_reg;

// Ingress Packet Event Logic

control Ingress(inout headers_t hdr,

inout std_meta_t meta) {

bit<32> bufSize;

apply {

bufSize_reg.read(bufSize);

// use bufSize to make forwarding decisions

}

}

// Enqueue Event Logic

control Enqueue(inout enq_data_t meta) {

bit<32> bufSize;

apply {

bufSize_reg.read(bufSize);

bufSize = bufSize + meta.pkt_len;

bufSize_reg.write(bufSize);

}

}

// Dequeue Event Logic

control Dequeue(inout deq_data_t meta) {

bit<32> bufSize;

apply {

bufSize_reg.read(bufSize);

bufSize = bufSize - meta.pkt_len;

bufSize_reg.write(bufSize);

}

}

˃ E.g: Compute total buffer occupancy:



Lower Line Rate Event Processing
˃ Multi-ported memory is more practical

˃ One port per event type that accesses state array

>> 7

Traffic
ManagerIngress Packet

Enqueue Event

Dequeue Event

st
at
e

st
at
e



Higher Line Rate Event Processing
˃ Multi-ported memory is impractical

>> 8

Traffic
Manager

statestate



Enqueue
Event

Dequeue
Event

Higher Line Rate Event Processing
˃ Multi-ported memory is impractical

˃ Approach:
Multiple single ported register arrays
Packet event RMW operations operate on main register
Metadata event RMW operations are aggregated
Staleness of algorithmic state is bounded

>> 9

Traffic
Manager

statestate

Enqueue Event

Dequeue EventIngress 
Packet 
Event

Enqueue: NULL

Dequeue: SUB 100B from queue 0

Packet: READ queue 1



NetFPGA SUME Event Switch Demo
˃ Simple Fair-RED (FRED) AQM implementation

˃ Isolate TCP flow from non-adaptive UDP flow

˃ Computes per-active-flow queue occupancy
Enqueue & Dequeue Events

˃ Queue occupancy tracing:

>> 10

Host A

Host B

Host C

Monitor

F0 qsize: XXX

F1 qsize: YYY

Flow 0
(TCP Cubic)

Flow 1
(UDP – 8Gbps)

• With FRED – UDP flow limited to 10KB of buffer
• One 10MB TCP Flow è ~0.01 sec FCT

Q
ue

ue
 O

cc
up

an
cy

 (B
)

Time (ms)

Per-Active-Flow
Queue Occupancy



Conclusion

˃ Network algorithms are event-driven, so should our data-plane architectures

>> 11

IDLESend 
LSU

timeout

Start

link status change

Send 
HELLO

Periodic
event

Start

End Host Protocols
(e.g. Reliable Delivery)

Control-Plane Protocols
(e.g. Routing Protocols)

˃ Potential to offload much more functionality to our data-planes

Wait 
ACK

Send 
Pkt

timeout
ACK

received
done

Start

Data
sent

IDLE



Questions?



Line Rate Event Processing

˃ Idle clock cycles:
1. Workload contains large packets
2. Pipeline runs faster than line rate

>> 13

Enqueue
Operations

Register

100

Queue Size
Register

0

0

Dequeue
Operations

Register
Enqueue: NULL

Dequeue: SUB 100B from queue 0

Packet: READ queue 1

0

SUB 10000:

1:

2:

3:

0:

1:

2:

3:

0:

1:

2:

3:

˃ Bounded staleness of the main register



SUME Event Switch on NetFPGA

>> 14

Output 
Queues

Event 
Merger

Timer 
Module

Packet 
Generator

Arbiter

nf0

nf1

nf2

nf3

dma

Timer period

Generate packet

Enq event

Deq event
Drop event

Timer event

Packet event

Link status
change event

nf0
nf1

nf2

nf3

dma

P4 Pipeline (SDNet)


