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The End of an Era

• 40 years of stunning progress in microprocessor design

• 1.4x annual performance improvement for 40+ years ≈ 106 x faster (throughput)!

• Three architectural innovations:

• Width: 8->16->64 bit (~4x)

• Instruction level parallelism: 

• 4-10 cycles per instruction to 4+ instructions per cycle (~10-20x)

• Multicore: one processor to 32 cores (~32x)

• Clock rate: 3 MHz to 4 GHz (through technology & architecture)

• Made possible by IC technology:

• Moore’s Law: growth in transistor count

• Dennard Scaling: power/transistor shrinks as speed & density increase

• Power = frequency x CV2

• Energy expended per computation was reducing
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THREE CHANGES CONVERGE

• Technology
• End of Dennard scaling: power becomes the key constraint
• Slowdown in Moore’s Law: transistors cost (even unused)

• Architectural
• Limitation and inefficiencies in exploiting instruction level 

parallelism end the uniprocessor era.
• Amdahl’s Law and its implications end the “easy” multicore era

• Application focus shifts
• From desktop to individual, mobile devices and ultrascale cloud 

computing, IoT: new constraints.
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UNIPROCESSOR PERFORMANCE
(SINGLE CORE)

Performance = highest SPECInt by year; from Hennessy & Patterson [2018]. 
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MOORE’S LAW IN DRAMS
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THE TECHNOLOGY SHIFTS
MOORE’S LAW SLOWDOWN IN INTEL PROCESSORS
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10X

Cost/transisto
r slowing 
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TECHNOLOGY, POWER, AND
DENNARD SCALING
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ENERGY EFFICIENCY IS THE NEW METRIC

Battery lifetime determines effectiveness!

LCD is biggest; 
CPU close 

behind.

“Always on” 
assistants likely 
to increase CPU 

demand.Future processors 7



AND IN THE CLOUD
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END OF DENNARD SCALING IS A CRISIS

• Energy consumption has become more important to users
• For mobile, IoT, and for large clouds

• Processors have reached their power limit
• Thermal dissipation is maxed out (chips turn off to avoid overheating!)
• Even with better packaging: heat and battery are limits.

• Architectural advances must increase energy efficiency
• Reduce power or improve performance for the same power

• But, most architectural techniques have reached limits in energy efficiency!
• 1982-2005: Instruction level parallelism
• Compiler and processor find parallelism

• 2005-2017: Multicore
• Programmer identifies parallelism

• Caches: diminishing returns (small incremental improvements).
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Instruction Level Parallelism Era
1982-2005

• Instruction level parallelism achieves significant 
performance advantages

• Pipelining: 5 stages to 15+ stages to allow faster clock 
rates (energy neutralized by Dennard scaling)

• Multiple issue: <1 instruction/clock to 4+ 
instructions/clock
• Significant increase in transistors to increase issue rate

• Why did it end?
• Diminishing returns in efficiency
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Getting More ILP

• Branches and memory aliasing are a major limit:
• 4 instructions/clock x 15 deep pipelineè need more than 60 

instructions “in flight”

• Speculation was introduced to allow this

• Speculation involves predicting program behavior
• Predict branches & predict matching memory addresses
• If prediction is accurate can proceed
• If the prediction is inaccurate, undo the work and restart

• How  good must branch prediction be—very good!
• 15-deep pipeline: ~4 branches 94% correct = 98.7%
• 60-instructions in flight: ~15 branches 90% = 99%
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WASTED WORK ON THE INTEL CORE I7
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The Multicore Era
2005-2017

• Make the programmer responsible for identifying 
parallelism via threads

• Exploit the threads on multiple cores

• Increase cores if more transistors: easy scaling!

• Energy ≈ Transistor count ≈ Active cores

• So, we need Performance ≈ Active cores

• But, Amdahl’s Law says that this is highly unlikely
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AMDAHL’S LAW LIMITS PERFORMANCE GAINS FROM
PARALLEL PROCESSING
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SECOND CHALLENGE TO HIGHER PERFORMANCE FROM
MULTICORE: END OF DENNARD SCALING

• End of Dennard scaling means multicore scaling ends
• Full scaling will mean “dark silicon,” with cores OFF.

• Example
• Today: 14 nm process, largest Intel multicore
• Intel E7-8890: 24-core, 2.2 GHz, TDP = 165W (power limited)
• Turbo (one core): 3.4 GHz. All cores @ 3.4 GHz = 255 W.

• A 7 nm process could yield (estimates)
• 64 cores; power unconstrained: 6 GHz & 365 W. 
• 64 cores; power constrained: 4 GHz & 250 W.

Power Limit Active Cores

180 W 46/64

200 W 51/64

220 W 56/64
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PUTTING THE CHALLENGES TOGETHER
DENNARD SCALING + AMDAHL’S LAW

Speedup versus % ”Serial” Processing Time
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SIDEBAR: INSTRUCTION SET EFFICIENCY

• RISC ideas were about improving efficiency:
• 1980s: efficiency in use of transistors
• Less significant in CPUs in 1990s: processors dominated by 

other things & Moore/Dennard in full operation

• RISC comeback: driven by mobile world in 2000s:
• Energy efficiency crucial: small batteries, all day operation
• Si efficiency important for cost!

• 2020 and on: Add Design Efficiency
• With growing spectrum of designs targeted to specific 

applications, efficiency of design/verification increasing.
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What OPPORTUNITIES Left?

▪ SW-centric
- Modern scripting languages are interpreted, 

dynamically-typed and encourage reuse
- Efficient for programmers but not for execution

▪ HW-centric
- Only path left is Domain Specific Architectures
- Just do a few tasks, but extremely well

▪ Combination
- Domain Specific Languages & Architectures
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WHAT’S THE OPPORTUNITY?

Matrix Multiply: relative speedup to a Python version (18 core Intel)
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from: “There’s Plenty of Room at the Top,” Leiserson, et. al., to appear.
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DOMAIN SPECIFIC ARCHITECTURES (DSAS)

• Achieve higher efficiency by tailoring the architecture to 
characteristics of the domain
• Not one application, but a domain of applications 
• Different from strict ASIC

• Requires more domain-specific knowledge then GP processors 
need

• Design DSAs and processors for targeted environments
• More variability than in GP processors

• Examples:
• Neural network processors for machine learning
• GPUs for graphics, virtual reality

• Good news: demand for performance focused on such domains
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WHERE DOES THE ENERGY GO IN GP CPUS?
CAN DSAS DO BETTER?
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Function Energy in Picojoules
8-bit add 0.03
32-bit add 0.1
FP Multiply 16-bit 1.1
FP Multiply 32-bit 3.7
Register file access* 6 
Control (per instruction, superscalar) 20-40
L1 cache access 10
L2 cache access 20
L3 cache access 100
Off-chip DRAM access 1,300-2,600

From Horowitz [2016].

* Increasing the size or number of ports, increases energy  roughly proportionally.



INSTRUCTION ENERGY BREAKDOWN
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WHY DSAS CAN WIN (NO MAGIC)
TAILOR THE ARCHITECTURE TO THE DOMAIN

• Simpler parallelism for a specific domain (less control HW):
• SIMD vs. MIMD 
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth (on/off chip)
• User controlled versus caches
• Processor + memory structures versus traditional
• Program prefetching to off-chip memory when needed

• Eliminate unneeded accuracy
• IEEE replaced by lower precision FP
• 32-bit,64-bit integers to 8-16 bits

• Domain specific programming model matches application to the 
processor architecture
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DOMAIN SPECIFIC LANGUAGES

DSAs require targeting high level operations to architecture
● Hard to start with C or Python-like language and recover 

structure
● Need matrix, vector, or sparse matrix operations
● Domain Specific Languages specify these operations:

○ OpenGL, TensorFlow, P4
● If DSL programs retain architecture-independence, 

interesting compiler challenges will exist
○ XLA

24

“XLA - TensorFlow, Compiled”, XLA Team, March 6, 2017

https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html


Deep learning is causing
a machine learning revolution

From “A New Golden Age in 
Computer Architecture: 
Empowering the Machine-
Learning Revolution.” Dean, 
J., Patterson, D., & Young, C. 
(2018).  IEEE Micro, 38(2), 
21-29.

https://ieeexplore.ieee.org/abstract/document/8259424/


TPU 1: High-level Chip Architecture
for DNN Inference

▪ Matrix Unit: 65,536 (256x256) 8-
bit multiply-accumulate units

▪ 700 MHz clock rate

▪ Peak: 92T operations/second 

▪ 65,536 * 2 * 700M

▪ >25X as many MACs vs. GPU

▪ >100X as many MACs vs. CPU

▪ 4 MiB of Accumulator memory

▪ 24 MiB of on-chip Unified Buffer 
(activation memory)

▪ 3.5X as much on-chip memory 
vs. GPU



HOW IS SILICON USED: TPU-1 VS. CPU?
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TPU-1 (–pads)
• Memory: 44%
• Compute: 39%
• Interface: 15%
• Control: 2% 

CPU (Skylake core)
• Cache: 33%
• Control: 30%
• Compute: 21%
• Mem Man:12%
• Misc: 4%  



M
at

rix
 U

ni
t (

M
XU

)
Matrix Unit Systolic Array

(Kung & Leiserson)

W11 W12 W13

W21 W22 W23

W31 W32 W33

X11

X12

Computing Y = WX

3x3 systolic array
W = 3x3 matrix

X13

X21

X22

X23

X31

X32

X33

in
pu

ts
w

ei
gh

ts

accumulation 28 Systolic slides courtesy of Cliff Young @ Google.



M
at

rix
 U

ni
t (

M
XU

)

W11
X11

W12 W13

W21 W22 W23

W31 W32 W33

X12

X13

X21

X22

X23

X31

X32

X33

in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array

accumulation 29



M
at

rix
 U

ni
t (

M
XU

)

W11
X21

W12X1

2+ 
W11X1

1

W13

W21
X11

W22 W23

W31 W32 W33

X13X22

X23

X31

X32

X33in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array
Computing Y = WX

with W = 3x3, batch-size(X) = 
3

accumulation 30



M
at

rix
 U

ni
t (

M
XU

)

W11
X31

W12X2

2+ 
W11X2

1

W13X1

3+ 
...

W21
X21

W22X1

2+ 
W21X1

1

W23

W31
X11

W32 W33

X23X32

X33

in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array
Computing Y = WX

with W = 3x3, batch-size(X) = 
3

accumulation 31



M
at

rix
 U

ni
t (

M
XU

) W11 W12

W13X3

3+ 
...

W21

W22X3

2+ 
W21X3

1

W23X2

3+ 
...

W31
X31

W32X2

2+ 
W31X2

1

W33X1
3
+ 
...

in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array
Computing Y = WX

with W = 3x3, batch-size(X) = 
3

Y21 = W11X21 + W12X22 + W13X23 Y11 = W11X11 + W12X12 + W13X13

Y12 = W21X11 + W22X12 + W23X13

outputs

accumulation 32



M
at

rix
 U

ni
t (

M
XU

) W11 W12 W13

W21 W22

W23X3
3
+ 
...

W31

W32X3

2+ 
W31X3

1

W33X2

3+ 
...

in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array
Computing Y = WX

with W = 3x3, batch-size(X) = 
3

outputs

Y31 = W11X31 + W12X32 + W13X33

Y22 = W21X21 + W22X22 + W23X23

Y11 = W11X11 + W12

Y12 = W21X11 + W22X12 + W23X13

Y21 = W11X21 + W12X22 + W13X23

Y13 = W31X11 + W32X12 + W33X13

accumulation 33



M
at

rix
 U

ni
t (

M
XU

) W11 W12 W13

W21 W22 W23

W31 W32

W33X3

3+ 
...

in
pu

ts
w

ei
gh

ts

Matrix Unit Systolic Array
Computing Y = WX

with W = 3x3, batch-size(X) = 
3

outputs

Y31 = W11X11 + W12X12 + W13X13

Y22 = W21X21 + W22X22 + W23X23 Y12 = W21X11 + W22

Y21 = W11X21 + W12

Y13 = W31X11 + W32X12 + W33X13

Y32 = W21X31 + W22X32 + W23X33

Y23 = W31X21 + W32X22 + W33X23

accumulation 34



M
at

rix
 U

ni
t (

M
XU

) W11 W12 W13

W21 W22 W23

W31 W32 W33

w
ei

gh
ts

Advantages: Matrix Unit Systolic Array in TPU-1

outputs

Y31 = W11X11 + W12
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• Each operand is used up to 256 times!
• Nearest-neighbor communication replaces RF access:

• Eliminate many reads/writes; reduce long wire delays 
• For 64K Matrix Unit:

• Energy from eliminating register access > energy of Matrix Unit!
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Performance/Watt on Inference TPU-1 vs CPU & GPU
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Important caveat:
• TPU-1 uses 8-bit integer
• GPU uses FP
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Log Rooflines for CPU, GPU, TPU
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Training: A Much More Intensive Problem
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FP operations/second 
to train in 3.5 months



Rapid Innovation
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92 teraops

Inference only

180 teraflops

64 GB HBM

Training and inference

Generally available (GA)

TPU v1

(deployed 2015)

Cloud TPU

(v2, Cloud GA 2017,

Pod Alpha 2018)

Cloud TPU

(v3, Cloud Beta 2018)

420 teraflops

128 GB HBM

Training and inference

Beta

Enabled by simpler design, compatibility at DSL level, ease of verification. 



Enabling Massive Computing Cycles for Training

40

Cloud TPU Pod (v2, 2017)

11.5 petaflops (64xTPU v2)
4 TB HBM
2-D toroidal mesh network
Training and inference
Alpha

TPU v3 Pod (2018)

> 100 petaflops! (256xTPU v3)
32 TB HBM
Liquid cooled
New chip architecture + larger-scale system



CHALLENGES AND OPPORTUNITIES

• Design of DSAs and DSLs

• Optimizing the mapping to a DSA for portability & performance.

• DSAs & DSLs for new fields

• Open problem: dealing with sparse data
▪ Make HW development more like software:
▪ Prototyping, reuse, abstraction
▪ Open HW stacks (ISA to IP libraries)
▪ Role of ML in CAD?

▪ Technology: 
▪ Silicon: Extend Dennard scaling and Moore’s Law

▪ Packaging: use optics, enhance cooling
▪ Beyond Si: Carbon nanotubes, Quantum?
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CONCLUDING THOUGHTS:
EVERYTHING OLD IS NEW AGAIN

• Dave Kuck, software architect for Illiac IV (circa 1975)
“What I was really frustrated about was the fact, with 
Iliac IV, programming the machine was very difficult 
and the architecture probably was not very well suited 
to some of the applications we were trying to run. The 
key idea was that I did not think we had a very good 
match in Iliac IV between applications and 
architecture.”

• Achieving cost-performance in this era of DSAs will 
require matching the applications, languages , 
architecture, and reducing design cost.

Dave Kuck, ACM Oral HistoryFuture processors 42



WHY DRAMS ARE HARD AND CRITICAL!
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INTEL CORE I7: Theoretical CPI = 0.25
Achieved CPI
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