Launching the P4 APl Working Group

Ul

Antonin Bas (antonin@barefootnetworks.com)
Lorenzo Vicisano (vicisano@google.com)




Motivation for standardizing P4 APlIs

- P4 language specifies the dataplane of a wide range of networking devices

- Elements of a P4 pipeline (e.g. tables) need to be managed at runtime to configure
the desired forwarding behavior, so runtime APIs need to be designed

- Standard APIs enable silicon independence by providing a common way of

acteontealling all R4-pragsgammable switches

} ipv4.dstAddr=10.
o v on . e
key = { . =10.
i . . set nhop (10.
hdr.ipv4.dstAddr : lpm; TableWrite . dsEAdd§=12
hdr.meta.vrf id : exact; pva. :
} drop ()
actions = {
drop;

set nhop;

O P P O O

O O O O O

.0/8, meta.vrf id=0Oxaa ->
.1)
.0/16, meta.vrf id=Oxaa ->
1)
.0/8, meta.vrf id=0x00 ->



Scope of the standard runtime APIs

Provide standard means for:

local control (NOS integration) => silicon independence

remote control (SDN controller integration) => switch vendor independence
- Runtime management of P4 tables

- Runtime management of Portable Standard Architecture (PSA) externs (e.g.
Counter, Meter, ActionProfile, ...)

- Ability to extend the API to support vendor-specific externs

- Minimal session management (remote APl only)



Switch configuration?

- For a good end-to-end solution, runtime management of a P4 pipeline is not enough

- We believe that switch configuration (port management, traffic manager
configuration, ...) should be in scope

- A good way to achieve this would be to define OpenConfig (http://openconfig.net/)
data models in YANG format, specific to switches exposing a P4 runtime API

- Avoid re-inventing the wheel: re-use existing YANG models as much as possible and
extend them if necessary



Initial work on one possible runtime APIl: P4ARuntime

- A protocol / program independent API to
- facilitate vendor adoption

- enable field-reconfigurability (ability to push a new P4 dataplane to the device, without any code
compilation needed on the switch)

- Device does not need to be fully P4 programmable

- can be used on legacy fixed-function devices, providing their forwarding behavior can be expressed
with a P4 program (for incremental update of hardware)

- Targets a remote controller

- protobuf + gRPC implementation: well-known, well-supported serialization format + many RPC
features for free (e.g. authentication...)



P4Runtime example: adding an entry to a table

table entry {
table id: 33581985
match {
field id: 1
lpm {
value: "\f\000\000\OOOQO"
prefix len: 8
}
}

action set nhop (bit<32> nhop) {

}
table ipv4 lpm {
key = {
hdr.ipv4.dstAddr : lpm;

. match {
hdr.meta.vrf id : ipv4.dstAddr=12.0.0.0/8, ) L
exact: - —p meta.vrf id=0x00 —p field id: 2
~> drop () exact {
} value: "\000\OOO"
actions = { }
drop; }
set nhop; action {
} action {

action id: 16812204
}

le

P4 table definition Logical view of entry Protobuf entry encoding



P4 APl WG

- Charter document to be published soon

- p4d-api@lists.p4.org mailing list

- P4Runtime is open-source and in active development on Github

- https://github.com/p4lang/PI

- We welcome new ideas and contributions, send us an email if you want to
participate



