[S |

'\‘\
,\
*

architecture of t.hveSPél16 compiler-
S -s ' 17, 2017-P4worksh0|:), Stan.l;c-).r.d “— <

'7?1%
N

Mihai Budiu, VMware Research .
ol

e Chris Doss, Barefoot Networks - ~s :

P4, .

* Newest version of the P4 language (finalized yesterday!)
https://github.com/p4lang/p4-spec/tree/master/p4-16/spec

* This talk is about the (reference implementation) compiler for P4,
* Compiles both P4, (i.e., P4v1.0 and P4 v1.1) and P4, programs

* Apache 2 license, open-source, reference implementation

* http://github.com/p4lang/p4c

 pdlang / p4c © Unwatch~ 40 W Star 30 YFork 26

<> Code Issues 67 Pull requests 9 Projects 0 Wiki Pulse Graphs

P4_16 prototype compiler

) 948 commits U 5 branches O 0 releases 22 22 contributors
I EEEEEEEEEEEE———_—_— A

Compiler goals

e Support current and future versions of P4

e Support multiple back-ends
* Generate code for ASICs, NICs, FPGAs, software switches and other targets

* Provide support for other tools (debuggers, IDEs, control-plane, etc.)
* Open-source front-end
 Extensible architecture (easy to add new passes and optimizations)

* Use modern compiler techniques
(immutable IR*, visitor patterns, strong type checking, etc.)

 Comprehensive testing

*IR = Intermediate Representation

Compiler data tlow

mid- ebpf C code
i end back-end
P4,, 14 V1 — convert
parser IR :
mid- BMv2 JSON
IR frontend — IR end back-end
P4,
P46 parser mid- z;(\);r: E?)fc?;c
end code

backend

Compiler structure

IR with target-specific
Same IR extensions

|

P4 §) Front-end i |R § Mid-end p |[R § Back-end

Y
Target-independent Target-specific
~25 distinct passes ~25 distinct passes

Structure

Fixed

Library of pre-built passes

P4 * Front-end

_

~

3 IR

J

libFrontEnd.a

nd match Custom

il

ﬁ Mid-end ﬁ IR ﬁ Back-end

_

~

/

main()

Simplify IR eliminating constructs gradually >

Implementation details

 Common infrastructure for all compiler passes
* Same IR and visitor base classes
 Common utilities (error reporting, collections, strings, etc.)

 C++11, using garbage-collection (-lgc)

* Clean separation between front-end, mid-end and back-end
* New mid+back-ends can be added easily

* IR can be extended (front-end and back-end may have different IRs)
* IR can be serialized to/from JSON
* Passes can be added easily

Intermediate Representation (IR)

* Immutable
e Can share IR objects safely
* Even in a multi-threaded environment
* You cannot corrupt someone else’s state

* Strongly-typed (hard to build incorrect programs)
* DAG structure, no parent pointers

* Manipulated by visitors

* IR class hierarchy is extensible

Visitor pattern

* https://en.wikipedia.org/wiki/Visitor_pattern

“In object-oriented programming and software engineering, the visitor design
pattern is a way of separating an algorithm from an object structure on which it
operates. A practical result of this separation is the ability to add new operations
to existing object structures without modifying those structures.”

e “Structure” = IR
e “Algorithms” = program manipulations

IR rewriting using visitors

Input DAG Output DAG

Modified DAG New DAG A Dead code

IR definition language compiled to C++

interface IDeclaration { .. }

Class hierarchy

abstract Expression { .. }
abstract Statement : StatOrDecl {}

class AssignmentStatement : Statement {

Expression left; p—
Expression right;
print{ out << left << " = " << right; }

IROP4

* Front-end and mid-end maintain invariant that IR (\§
is always serializable to a P4 program

* Simplifies debugging and testing _
* Easy to read the IR: just generate and read P4
» Easy to compare generated IR with reference (testing)
* Compiler can self-validate (re-compile generated code)
* Dumped P4 can contain IR representation as comments

* IR always maintains source-level position
* can emit nice error message anywhere

-

Learning the IR by example

* Front-end and mid-end passes can all dump IR back as P4 source
with IR as comments
/ *
<P4Program>(18274)
<IndexedVector<Node>>(18275) */
/ b3
<Type Struct>(15)struct Version */

struct Version {
/*
<StructField>(10)major/0
<Annotations>(2)
<Type Bits>(9)bit<8> */
bit<8> major;

vimodel.p4: A P4, switch model

* A P4, switch architecture that models the fixed switch architecture from the P4,, spec
* Provides backward compatibility for P4,, programs

». Parse verity ». Ingress
cksum

egress *compute* de arse»
5 cksum P

Testing the compiler

 Dump program at various points and compare with reference
* Compare expected compiler error messages (on incorrect programs)

P4 |:>I pac I|:> stderr

P4 P4 P4
| | | I
P4 P4 P4 errors Expected output

 Recompile P4 generated by compiler

P4[>I p4c I [>P4|:>I pac I

* Run vlmodel.p4 programs using BMv2 on packet traces and compare to
expected output

P4 |:> I pac I [> json expected
g packet trace

|
packet trace [> BMv2 simulator [> packet trace

Lessons

* P4 . is a simple language,... but the P4 environment is complicated
e Supports arbitrary architectures
* Arbitrary functionality in the architecture
* Arbitrary extensions (extern blocks)

* P4, is designed for extensibility
* Compilers must support extensibility while preserving stability

* Modularity/extensibility seems to work
* At least 5 existing back-ends, for software, simulators, FPGAs, ASICs

N

* Specification Implementation

A W 4

* Great community: thank you all!

