P4 Language Design
Working Group

Gordon Brebner

& XILINX

Language Design Working Group

e Responsibilities
o Defining the P4 language specification
o Managing the graceful evolution of the language
e Membership
o Co-chairs: Gordon Brebner and Nate Foster
o Open to representatives of all members of P4.org
o Activities
o Regular electronic discussion on p4-design email list
o In-person design meetings at Stanford
e Process

o Members propose new features and develop prototype implementations
o Working group reviews proposals and updates the specification

Recent Updates

e Finalized design of P4, — spec released yesterday on P4.org
e Target-architecture separation

Enables portability across platforms and extensibility through “externs”

o Static type system

Offers rich constructs for structuring data and finding bugs early in development

e Higher-level programming constructs

Makes programs more succinct and encourages code reuse

e Open-source prototype implementation available (p4c +Bmv2)

Target-Architecture Separation

P4,, is based on the PISA abstract forwarding model

B B>
B Packet | | >
B Buffering B
B and/or | (>
= aeceing - B ISIRE 1S
B B (T
\ \)
Ingres's pipeline Egress'pipeline
Components

« Parser
* Ingress + egress controls

Limitations

 Architecture is not the natural and/or only fit for every target (e.g., FPGA)
« Difficult to extend the language with new functionality (e.g., checksums)

Target-Architecture Separation

P4,; introduces the notion of an architecture model
» Collection of P4-programmable blocks

* Interfaces between blocks

« Available “extern” functions and stateful objects

Community-Developed Vendor-supplied

A —_—

P4 P4, Core :
Langt}gge Lﬂlg;rary I.Extel-'n AI’ChI.te.C.tu re
Libraries Definition

W

Number of keywords reduced from > 70 to < 40 because of this

Example Architecture: vimodel.p4

// Standard metadata carried between components . .
S e Can def_lne the F_’ISA model used in P4,, as
bit<g> ingress_port; an architecture instance for P4,,
bit<9> egress_spec;
e P4-programmable components:
} _ o Parser
// Extern checksum object . .
extern Checksuml6 { o Checksum verification

Checksum16() ; . .
bit<16> get<D>(in D data); © Ingress pipeline

} o Egress pipeline

// Programmable parser .
parser Parser<H, M>(packet_in b, © Checksum CompUtatlon

out H parsedHdr, 1e) Deparser
inout M meta, .
inout standard_metadata_t standard_metadata); e Extern Objects:

// Programmable ingress pipeline
O
control Ingress<H, M>(inout H hdr, Counters

inout M meta, o Meters

inout standard_metadata_t standard_metadata);

o Registers
// Top-level switch package o Checksum units
package V1Switch<H, M>(Parser<H, M> p,
VerifyChecksum<H, M> vr, e Programs are portable across any target
craresss, - 29 that implements this architecture
gress<H, M> eg,
ComputeChecksum<, M> ck, e Compiler back-end maps P4 fragments into

Deparser<H> dep);

target-specific code

Static Type System

e Rich constructs for structuring data
o Headers, header stacks, header unions
o Structs, enums, tuples, sets
e Numeric types
o bit<w>: unsigned, fixed-width bit strings
O varbit<w>: unsigned, variable-width bit strings
o int<w>: signed, fixed-width integers

o int: arbitrary precision integer constants

All numeric operations now have a well-defined semantics

Higher-level Programming Constructs

e P4,. supports a rich sub-language of expressions
modify field(egress port,4) = egress port = 2+2

e P4,, lifts many of the restrictions imposed in P4,,

o No longer need to define a dummy table to execute code in a control
o Actions may contain non-trivial control-flow (e.g., conditionals)

e Parameters and constructors facilitate code reuse

control fwd(in ipv4 h ipv4) () {
table t {
key = {
ipv4.dstAddress : ternary;
}

Next Steps

Architectures and APIs

e New architectures
e Control-plane interactions
e Incremental reprogramming

Tools and Implementation

e New targets
o Automated analysis and verification

Experience
e More innovative applications built on P4 — over to you ...

