
Pegasus: Load-Aware Selective Replication with an
In-Network Coherence Directory

Jialin Li1, Jacob Nelson2, Xin Jin3, and Dan R. K. Ports2

1University of Washington, 2Microsoft Research, 3Johns Hopkins University

1 Overview
Modern distributed storage systems are tasked with providing
fast, predictable performance in spite of immense and unpre-
dictable load. Workload skew presents a formidable challenge
for these system: some stored objects receive millions of re-
quests per day while others see almost none. Traditional load
balancing approaches (e.g., consistent hashing) fall short here,
forcing datacenter operators to run the system at lower utiliza-
tion.

Recent research has shown that programmable switches can
provide load balancing guarantees by caching popular items
in the switch dataplane [2]. However, this approach presents
two problems. First, hardware resource limitations make in-
dataplane storage infeasible in many scenarios: all cached
data must fit in limited switch memory, and value size is lim-
ited to what can fit in the packet header vector. In production
environments, existing routing functionality already strains
the limits of these resources. Second, write-through caching
approaches are only effective on read-mostly workloads.

In this talk, we will present a new approach to load bal-
ancing, Pegasus, that circumvents these challenges. Pegasus
is based on a co-design of a distributed storage system with
an in-network load balancing layer. It selectively replicates
popular data items, using a programmable switch to manage
object locations. A key design goal is that the switch stores
only a small amount of metadata, not data contents.

2 The Pegasus Approach
Pegasus is an co-designed architecture for a rack-scale stor-
age system, consisting of multiple storage servers and a pro-
grammable ToR switch that connects them. The system selec-
tively replicates popular objects to multiple storage servers.
The switch uses an in-network coherence directory to track
object locations, and implements load-aware forwarding.

Selective Replication. Pegasus leverages the key insight
behind NetCache and other systems: that provable load bal-
ancing can be achieved by relieving the load on only a small
number of objects (n logn in the number of servers) [1].
Rather than achieve this by caching, Pegasus instead repli-
cates the most popular objects to multiple servers. Conceptu-
ally, if these objects are replicated to all servers, and requests
are always sent to the least-loaded server, there is always suffi-
cient capacity to process requests. By reducing the replication

factor on objects with low read-to-write ratio, this approach
works for write-intensive workloads as well.

In-Network Coherence Directory. Pegasus implements
selective replication using a P4 switch. Drawing inspiration
from CPU cache coherency protocols, the Pegasus switch acts
as a coherence directory that tracks which objects are repli-
cated and where. The directory tracks only the O(n logn) most
popular objects, and maps them to a list of servers.

The switch uses the coherence directory to perform content-
based routing. Read requests for a popular item are forwarded
to the least loaded replica for that item; those for non-popular
items are forwarded using a standard consistent hashing pol-
icy. On write requests, the switch selects a new replica set
from the least loaded servers, effectively rebalancing the sys-
tem on every write. The routing implementation includes
two additional noteworthy techniques: (1) It uses a version-
based coherence protocol to ensure linearizability of requests
even when messages are reordered in the network, and (2) It
tracks server load using a combination of server-reported load
telemetry and switch-based load prediction.

3 Results
We have implemented a prototype of Pegasus on a Barefoot
Tofino switch. In brief, our evaluation with 32 servers shows:
• Pegasus reduces the 99th-percentile latency for skewed

workloads by up to 97%.
• Pegasus can increase the throughput by up to 9× – or re-

duce by 88% the number of servers required – of a system
subject to a 99%-latency SLO.

• Pegasus can react quickly to dynamic workloads where the
set of hot keys changes rapidly.

• Pegasus provides the same benefits as NetCache while con-
suming 1/200th the switch memory (less than 5 Kb), easing
practical deployment

• Pegasus is able to achieve these benefits for many classes
of workloads, both read-heavy and write-heavy, with dif-
ferent levels of skew.

References
[1] B. Fan, H. Lim, et al. Small cache, big effect: Provable load

balancing for randomly partitioned cluster services. In SOCC
’11.

[2] X. Jin, X. Li, et al. NetCache: Balancing key-value stores with
fast in-network caching. In SOSP ’17.


	Overview
	The Pegasus Approach
	Results
	References

